

# **MOBILE**

MOBILE DCU
MOBILE PSU
MOBILE DCU PSU
MOBILE DCU S

**EMDAGxxxxxxxx** 

Referenzhandbuch

DE

| 1          | Über die                            | ese Dokumentation                                        |  |  |  |  |
|------------|-------------------------------------|----------------------------------------------------------|--|--|--|--|
| 1.1        | Verwen                              | dete Konventionen                                        |  |  |  |  |
| 1.2        | verwen                              | dete Begriffe & Abkurzungen                              |  |  |  |  |
| 1.3        | Definiti                            | on der verwendeten Hinweise                              |  |  |  |  |
| 1.4        | Aufbau der Parameter-Beschreibungen |                                                          |  |  |  |  |
| 2          | Rechtliche Hinweise                 |                                                          |  |  |  |  |
| 3          | Einführ                             | ung: Das Gerät parametrieren und bedienen                |  |  |  |  |
| 3.1        | Interne                             | Prozessor-Architektur                                    |  |  |  |  |
| 3.2        | Haruwa                              | ne-/Firmware-Kompatibilitat                              |  |  |  |  |
| 3.3        | Sicherne                            | ertsanwendungen                                          |  |  |  |  |
| 3.4        | Kunaen                              | schnittstellen                                           |  |  |  |  |
|            | 3.4.1                               | Bedienung über Public CAN nach SAE J1939                 |  |  |  |  |
|            | 3.4.2                               | Bedienung über Private CAN nach CANopen                  |  |  |  |  |
|            | 3.4.3                               | Bedienung über Klemmen                                   |  |  |  |  |
| 3.5        |                                     | identifikation                                           |  |  |  |  |
|            | 3.5.1                               | MOBILE DC0, PS0, DC0 PS0                                 |  |  |  |  |
|            | 3.5.2                               | WORITE DCD 2                                             |  |  |  |  |
| 3.6        | Parame                              | teremstendigen verandem                                  |  |  |  |  |
|            | 3.6.1                               | Benutzeroberflache                                       |  |  |  |  |
| <b>.</b> - | 3.6.2                               | Objektverzeichnis                                        |  |  |  |  |
| 3.7<br>3.8 | Parame                              | tereinstellungen permanent im MOBILE speichern           |  |  |  |  |
| 3.8<br>3.9 | Parametersatz laden  MOBILE Panels  |                                                          |  |  |  |  |
| 5.9        | 3.9.1                               | Panels  Inhatrich pahma Panels installigen               |  |  |  |  |
|            | 3.9.1                               | Inbetriebnahme-Panels installieren                       |  |  |  |  |
|            | 3.3.2                               | Diagnose-Panels installieren                             |  |  |  |  |
| 4          | Inbetrie                            | bnahme                                                   |  |  |  |  |
| 4.1        | Gerät ei                            | inschalten                                               |  |  |  |  |
|            | 4.1.1                               | Gerätestatus                                             |  |  |  |  |
|            | 4.1.2                               | Klemme-15-Signal                                         |  |  |  |  |
|            | 4.1.3                               | Inverter Ready Zustand und Einschaltbedingungen          |  |  |  |  |
|            | 4.1.4                               | Systemfreigabe                                           |  |  |  |  |
|            | 4.1.5                               | Reglerfreigabe                                           |  |  |  |  |
| 4.2        | Kommu                               | nikation mit »MOBILE Engineer« über Private CAN aufbauen |  |  |  |  |
| 5          | Applicat                            | tion-Controller (APPC)                                   |  |  |  |  |
| 5.1        | Grunde                              | instellungen                                             |  |  |  |  |
|            | 5.1.1                               | FLX IN1 FLX IN4                                          |  |  |  |  |
|            |                                     | 5.1.1.1 Einstellmöglichkeiten                            |  |  |  |  |
|            |                                     | 5.1.1.2 Auswahl Festsollwerte                            |  |  |  |  |
|            |                                     | 5.1.1.2 Auswahl Festsollwerte                            |  |  |  |  |
|            |                                     | 5.1.1.4 Verzögertes Einschalten über einen FLX_IN        |  |  |  |  |
|            |                                     | 5.1.1.5 Verzogertes Ausschaften über einen FLX_IN        |  |  |  |  |
|            | 5.1.2                               | FLX OUT1 FLX OUT4                                        |  |  |  |  |
| 5.2        | Automa                              | itischer Fault Reset                                     |  |  |  |  |
|            | 5.2.1                               | Parameter                                                |  |  |  |  |
|            | 5.2.2                               | Fault Reset einstellen                                   |  |  |  |  |
|            |                                     | 5.2.2.1 Auswani der Fenierbits                           |  |  |  |  |
|            |                                     | 5.2.2.2 mcFaultResetMask                                 |  |  |  |  |
|            |                                     | 5.2.2.3 mcResetTypeMask                                  |  |  |  |  |
|            |                                     | 5.2.2.4 mcMaxResetNumber                                 |  |  |  |  |
|            |                                     | 5.2.2.5 mcFaultResetDelayTime                            |  |  |  |  |
|            |                                     |                                                          |  |  |  |  |

| F 3  |             | allbeispiel                                                                                     |
|------|-------------|-------------------------------------------------------------------------------------------------|
| 5.3  | Einstellung | gen Public CAN                                                                                  |
| 5.4  | Einstellung | gen Private CAN gen Drive Control Unit (DCU)                                                    |
| 5.5  | Einstellung | gen Drive Control Unit (DCU)                                                                    |
|      | 5.5.1 A     | Auswahl der Applikation                                                                         |
| 5.6  | Einstellung | gen Power Supply Unit (PSU)                                                                     |
| 6    | Motor-Con   | troller (MC)                                                                                    |
| 6.1  | Kommunik    | rationsobjekterationsobjekte                                                                    |
| 6.2  | Grundeins   | tellungentellungen                                                                              |
| 6.3  | Precharge-  | Funktion /orladung über Public CAN                                                              |
|      | 6.3.1 \     | orladung über Public CAN                                                                        |
|      | 6.3.2 V     | orladung uber FLX_INX                                                                           |
| 6.4  | Discharge-  | Funktion                                                                                        |
| 6.5  | MOLOT/MO    | torrucklunrung                                                                                  |
|      | 6.5.1 N     | Notorparameter                                                                                  |
|      | 6.5.2 L     | agegeber und Temperatursensor                                                                   |
|      | 6.5.3 R     | Resolver                                                                                        |
|      | 6.5.4 N     | Notortemperaturüberwachung                                                                      |
| 6.6  | Drive Profi | le Generator                                                                                    |
|      | 6.6.1 \     | relocity Moderelocity Mode                                                                      |
|      | 6.6.2 F     | rofile Forque Mode                                                                              |
|      | 6.6.3       | Generator Mode  yclic Synchronous Position Mode                                                 |
|      | 6.6.4       | Cyclic Synchronous Position Mode                                                                |
| 6.7  | Übersicht d | der Regelungsarten                                                                              |
|      | 6.7.1 k     | Ger Regelungsarten  Combinationen Regelungsart und CiA402-Betriebsmodus                         |
|      | 6.7.2 k     | Combinationen Regelungsart und Motor                                                            |
| 6.8  | SLVFCI - Se | nsoriose U/f-Kennliniensteuerung für Asynchronmotoren                                           |
|      | 6.8.1 F     | unktion SLVFCI                                                                                  |
|      | 6.8.2 F     | requenzbegrenzer                                                                                |
|      | 6.8.3 K     | lennlinie                                                                                       |
|      | $\epsilon$  | Spannungsanhebung (Boost)  Beispiel für die Einstellung der U/f-Parameter eines Asynchronmotors |
|      | 6           |                                                                                                 |
|      |             | otor-Fluss-Modell                                                                               |
|      |             | ositions-Extrapolation                                                                          |
| 6.9  |             | sorlose Vektorregelung für Asynchronmotoren                                                     |
|      | 6.9.1 F     | unktion SLVCI                                                                                   |
| 6.10 | VCI - Vekto | orregelung für Asynchronmotoren                                                                 |
| 6.11 | SLVCS - Ser | isoriose vektorregelung für Synchronmotoren                                                     |
|      | 6.11.1 P    | osition-Geschwindigkeit-Beobachter                                                              |
| 6.12 | VCS - Vekto | orregelung für Synchronmotoren                                                                  |
| 6.13 | Applikatioi | nsregler                                                                                        |
| 6.14 | Positionsre | ·gler                                                                                           |
| 6.15 | Geschwind   | ligkeitsregler                                                                                  |
| 6.16 | Leistungs-  | und Drenmomentbegrenzer                                                                         |
| 6.17 | DC-Zwisch   | enkreisregler                                                                                   |
| 6.18 | Feldschwa   | cheregier                                                                                       |
| 6.19 | Fangschalt  | ung                                                                                             |
| 6.20 | Inverter _  | ung Überlast Motor (I2×t)                                                                       |
| 6.21 | Uberwachi   | ung Uberlast Motor (I2×t)                                                                       |
| 6.22 | Uberwachi   | ung Überlast Modul (I×t)                                                                        |
| 6.23 | Leistungsb  | erecnnungerecnnung                                                                              |
| 6.24 | borunetzw   | andler konfigurieren                                                                            |
|      | 6.24.1 K    | leaktion bei kommunikationsterner                                                               |
|      | 6.24.2 E    | Bordnetzwandler                                                                                 |

|     | 6.24.3           | Stromregler                                                       | 1  |
|-----|------------------|-------------------------------------------------------------------|----|
|     | 6.24.4           | Spannungs-Derating                                                | 1  |
|     | 6.24.5           | Sollwertgenerator                                                 | 10 |
|     | 6.24.6           | Spannungsregler  DC-Zwischenkreis-Minimum-Regler                  | 10 |
|     | 6.24.7           | DC-Zwischenkreis-Minimum-Regler                                   | 16 |
|     | 6.24.8           | Leistungsberechnung                                               | 16 |
|     | 6.24.9           | Leistungsberechnung<br>Überwachung Überlast Modul (I×t)           | 16 |
| 7   | Public C         | CAN                                                               | 16 |
| 7.1 | Datenfo          | format der physikalischen Werte                                   |    |
| 7.2 | Parame           | etergruppen (PGs)                                                 | 1  |
|     | 7.2.1            | Identifier                                                        |    |
|     | 7.2.2            | Parameter Group Number (PGN)                                      |    |
| 7.3 | Public C         | CAN receive messages                                              |    |
|     | 7.3.1            | CAN receive messages Status der übergeordneten Steuerung          |    |
|     | 7.3.2            | Sollwerte für Motor A                                             |    |
|     | 7.3.3            | Sollwerte tur Motor B                                             | 14 |
|     | 7.3.4            | Sollwerte für Bordnetzwandler                                     | 17 |
| 7.4 |                  | CAN transmit messages                                             | 17 |
|     | 7.4.1            | Gerätestatus des MOBILE                                           | 17 |
|     | 7.4.2            | Istwerte vom Motor A                                              | 18 |
|     | 7.4.3            | Istwerte vom Motor B                                              | 18 |
|     | 7.4.4            | Istwerte vom Bordnetzwandler                                      | 18 |
| 8   | Unified          |                                                                   |    |
| 8.1 | Generel          | d Diagnostic Services (UDS)  eller Aufbau der Diagnosebotschaften | 18 |
| 8.2 | Protoko          | ollservices                                                       | 18 |
| 0.2 | 8.2.1            | ollservices Übersicht "Services & Dienste"                        | 18 |
|     | 8.2.2            | \$10: Diagnostic Session Control                                  | 18 |
|     | 8.2.3            | \$11. FCI   Reset                                                 | 18 |
|     | 8.2.4            | \$11: ECU Reset<br>\$14: Clear Diagnostic Information             | 18 |
|     | 8.2.5            | \$10. Pead DTC Information                                        | 19 |
|     | 8.2.6            | \$19: Read DTC Information                                        | 19 |
|     | 8.2.7            | \$22: Read Data By Identifier                                     | 19 |
|     | 8.2.8            | \$27: Security Access                                             | 19 |
|     | 8.2.9            | \$28: Communication Control\$31: Routine Control                  |    |
|     | 8.2.10           |                                                                   |    |
|     | 8.2.11           | \$34: Request Download                                            | 20 |
|     | 8.2.11           | \$55: Request Opioau                                              |    |
|     | 8.2.12<br>8.2.13 |                                                                   |    |
|     |                  |                                                                   | 20 |
|     | 8.2.14<br>8.2.15 | 35E: Tester Present                                               | 20 |
| 8.3 |                  | \$85: Control DTC Settingve Response Codes                        | 20 |
|     |                  |                                                                   |    |
| 9   | Univers          | sal Measurement and Calibration Protocol (XCP)                    | 20 |
| 9.1 |                  | s Public CAN                                                      | 20 |
| 9.2 | Unterst          | tütze XCP-Nachrichtentypen                                        | 20 |
| 9.3 | Unterst          | tütze Kommandos  STANDARD COMMANDS (STD)                          | 20 |
|     | 9.3.1            | STANDARD COMMANDS (STD)                                           | 2  |
|     | 9.3.2            | CALIBRATION COMMANDS (CAL)                                        | 20 |
|     | 9.3.3            | DATA ACQUISITION AND STIMULATION COMMANDS (DAQ)                   |    |
| 94  | XCP-Sch          | hreibzugriff und DAO-Freischaltung                                | 21 |

| 10   | Diagnos  | e & Fehlermanagement                                                        | 21 |  |  |  |  |
|------|----------|-----------------------------------------------------------------------------|----|--|--|--|--|
| 10.1 | Trace-Fu | Trace-Funktion                                                              |    |  |  |  |  |
|      | 10.1.1   |                                                                             | 21 |  |  |  |  |
|      | 10.1.2   | Neuen Trace erstellen  Benutzeroberfläche (Trace-Panel)                     | 21 |  |  |  |  |
|      | 10.1.3   | Kanäle hinzufügen und konfigurieren                                         | 21 |  |  |  |  |
|      | 10.1.4   | Trace-Funktion konfigurieren                                                | 21 |  |  |  |  |
|      | 10.1.5   | Trace-Funktion starten                                                      | 21 |  |  |  |  |
|      | 10.1.6   | Download/Upload-Funktionen                                                  | 21 |  |  |  |  |
|      | 10.1.7   | Diagrammdarstellung anpassen                                                | 21 |  |  |  |  |
|      | 10.1.8   | Diagrammdarstellung anpassen Anzeige der Trace-Daten in tabellarischer Form | 21 |  |  |  |  |
| 10.2 | Fehlersp |                                                                             | 21 |  |  |  |  |
|      | 10.2.1   | eicher<br>Aufbau der Fehlereinträge                                         | 2: |  |  |  |  |
|      |          | 10.2.1.1 DTC Number                                                         | 22 |  |  |  |  |
|      |          | 10.2.1.2 DTC Status                                                         | 22 |  |  |  |  |
|      |          | 10.2.1.3 MC Environment Data                                                | 22 |  |  |  |  |
|      | 10.2.2   | Diagnostic Trouble Codes (DTC)                                              | 22 |  |  |  |  |
|      | 10.2.3   | Fehlereinträge löschen                                                      | 2  |  |  |  |  |
| 10.3 | SAE J193 | Dagnose-Melaungen (DM)                                                      | 2  |  |  |  |  |
|      | 10.3.1   | DIVIT - ACTIVE DIAGNOSTIC Froudie Codes                                     | 2  |  |  |  |  |
| 10.4 | Bedeutu  | ng der Warnungs- und Fehlerbits im MC-Statuswort 1 & 2                      | 24 |  |  |  |  |
| 10.5 | Fehlerm  | eldungen, Ursachen & mögliche Abhilfen                                      | 2  |  |  |  |  |
|      |          |                                                                             |    |  |  |  |  |
| 11   |          | CAN - Prozessdaten                                                          | 24 |  |  |  |  |
| 11.1 | Prozesso | laten-Objekte MOBILE DCU                                                    | 24 |  |  |  |  |
|      | 11.1.1   | IPDO 1 - Istwerte vom Gerat                                                 | 24 |  |  |  |  |
|      | 11.1.2   | TPDO 2 - Status vom Inverter A                                              | 2  |  |  |  |  |
|      | 11.1.3   | TPDO 3 - Istwerte (1) vom Motor A                                           | 24 |  |  |  |  |
|      | 11.1.4   | TPDO 4 - Istwerte (2) vom Motor A                                           | 24 |  |  |  |  |
|      | 11.1.5   | TPDO 5 - Status vom Inverter B                                              | 24 |  |  |  |  |
|      | 11.1.6   | TPDO 6 - Istwerte (1) vom Motor B                                           | 2  |  |  |  |  |
|      | 11.1.7   | TPDO 7 - Istwerte (2) vom Motor B                                           | 24 |  |  |  |  |
|      | 11.1.8   | RPDO 1 - Sollwerte (1) für Inverter A                                       | 24 |  |  |  |  |
|      | 11.1.9   | RPDO 2 - Sollwerte (2) für Inverter A                                       | 2  |  |  |  |  |
|      | 11.1.10  | RPDO 3 - Sollwerte (1) für Inverter B                                       | 2  |  |  |  |  |
|      | 11.1.11  | RPDO 4 - Sollwerte (2) für Inverter B                                       | 2  |  |  |  |  |
|      | 11.1.12  | RPDO 5 - Sollwerte für Gerät                                                | 2  |  |  |  |  |
| 11.2 | Prozesso | daten-Objekte MOBILE DCU PSU                                                | 24 |  |  |  |  |
|      | 11.2.1   | IPDO 1 - Istwerte vom Gerat                                                 | 24 |  |  |  |  |
|      | 11.2.2   | TPDO 2 - Status vom Bordnetzwandler                                         | 24 |  |  |  |  |
|      | 11.2.3   | IPDO 3 - Istwerte (1) vom Bordnetzwandler                                   | 24 |  |  |  |  |
|      | 11.2.4   | TPDO 4 - Istwerte (2) vom Bordnetzwandler                                   | 2! |  |  |  |  |
|      | 11.2.5   | TPDO 5 - Status vom Inverter B                                              | 2! |  |  |  |  |
|      | 11.2.6   | TPDO 6 - Istwerte (1) vom Motor B                                           | 25 |  |  |  |  |
|      | 11.2.7   | TPDO 7 - Istwerte (2) vom Motor B                                           | 2  |  |  |  |  |
|      | 11.2.8   | RPDO 1 - Soliwerte (1) für Bordnetzwandler                                  | 25 |  |  |  |  |
|      | 11.2.9   | RPDO 2 - Sollwerte (2) für Bordnetzwandler                                  | 2! |  |  |  |  |
|      | 11.2.10  | RPDO 3 - Sollwerte (1) für Inverter B                                       | 2  |  |  |  |  |
|      | 11.2.11  | RPDO 4 - Sollwerte (2) für Inverter B                                       | 25 |  |  |  |  |
|      | 11.2.12  | RPDO 5 - Sollwerte für Gerät                                                | 2  |  |  |  |  |
| 11.3 | Timeout  | -Uberwachung der RPDOs                                                      | 2  |  |  |  |  |
| 11.4 | renierre | aktion bel Austali der CAN-kommunikation                                    | 2  |  |  |  |  |
| 11.5 | PDO-Du   | mmy-Mapping                                                                 | 25 |  |  |  |  |
|      |          |                                                                             |    |  |  |  |  |
| 12   | Index _  |                                                                             | 2  |  |  |  |  |

\_\_\_\_\_

### 1 Über diese Dokumentation



## Gefahr!

Vom Gerät gehen Gefahren aus, die den Tod oder schwere Verletzungen von Personen zur Folge haben können.

Zum Schutz vor diesen Gefahren müssen vor dem Einschalten des Geräts die Sicherheitshinweise im Gerätehandbuch zum MOBILE beachtet werden!

Das Gerätehandbuch ist in elektronischer Form auf dem Datenträger gespeichert, der zum Lieferumfang des MOBILE gehört.

### **Zielgruppe**

Diese Dokumentation richtet sich an alle Personen, die den MOBILE parametrieren, konfigurieren und diagnostizieren möchten.

#### Informationen zur Gültigkeit

Die Informationen in dieser Dokumentation sind gültig für folgende Hard- und Firmware-Kombinationen:

| Produktreihe   | Hardware<br>(Typenbezeichnung) | Firmware<br>(Bezeichnung) | ab Firmware-Version |
|----------------|--------------------------------|---------------------------|---------------------|
| MOBILE DCU     | EMDAG2xxxxxxxx                 | EMDAFFEAAxxxxxxx          | R6.3                |
| MOBILE PSU     | EMDAG3xxxxxxxx                 | EMDAFFEBAxxxxxxx          | R6.3                |
| MOBILE DCU PSU | EMDAG4xxxxxxxx                 | EMDAFFEBAxxxxxxx          | R6.3                |
| MOBILE DCU S   | EMDAG5xxxxxx0x                 | EMDAFFEABxxxxxxx          | R6.3                |

#### Screenshots/Anwendungsbeispiele

Alle Screenshots in dieser Dokumentation sind Anwendungsbeispiele. Je nach Firmware des MOBI-LE und Software-Version der installierten Engineering-Tools (»MOBILE Engineer« oder »MOBILE Starter«) können die Screenshots in dieser Dokumentation von der Bildschirm-Darstellung abweichen.

-----

### Dokumenthistorie

| Version |         | Beschreibung                         |
|---------|---------|--------------------------------------|
| 4.0     | 09.2023 | Anpassung an Firmware R6.4           |
| 3.0     | 07.2021 | Umfimierung auf Bucher Hydraulics AG |
| 2.1     | 03.2021 | Anpassung an Firmware R6.3           |
| 2.0     | 04.2019 | Anpassung an Firmware R6.1           |
| 1.2     | 08.2014 | Anpassung an Firmware R5.2           |
| 1.1     | 05.2014 | Anpassung an Firmware R5.0           |
| 1.0     | 11.2013 | Erstausgabe                          |



 $\label{lem:mobile} \mbox{Informationen und Hilfsmittel rund um MOBILE finden Sie im Internet:} \\ \underline{\mbox{www.bucherdrives.com}}$ 

### 1.1 Verwendete Konventionen

-----

### 1.1 Verwendete Konventionen

Diese Dokumentation verwendet folgende Konventionen zur Unterscheidung verschiedener Arten von Information:

| Informationsart        | Auszeichnung   | Beispiele/Hinweise                                                                                                                                                                                                                          |
|------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Zahlenschreibweise     |                |                                                                                                                                                                                                                                             |
| Dezimaltrennzeichen    | Punkt          | Es wird generell der Dezimalpunkt verwendet.<br>Beispiel: 1234.56                                                                                                                                                                           |
| Hexadezimalzahl        | 0x             | Für Hexadezimalzahlen wird der Präfix "0x" verwendet.<br>Beispiel: 0x60F4                                                                                                                                                                   |
| Binärzahl              | 0b             | Für Binärzahlen wird der Präfix "0b" verwendet.<br>Beispiel: 0b00010111                                                                                                                                                                     |
| Textauszeichnung       |                |                                                                                                                                                                                                                                             |
| Versionsinfo           | Textfarbe blau | Alle Informationen, die nur für oder ab einem bestimmten Firmwarestand des Antriebsreglers gelten, sind in dieser Dokumentation entsprechend gekennzeichnet.  Beispiel: Diese Funktionserweiterung ist ab dem Firmwarestand V3.0 verfügbar! |
| Programmname           | » «            | Die Bucher PC-Software »MOBILE Engineer«                                                                                                                                                                                                    |
| Fensterbereich         | kursiv         | Das Meldungsfenster / Das Dialogfeld Optionen                                                                                                                                                                                               |
| Variablenbezeichner    |                | Durch Setzen von bEnable auf TRUE                                                                                                                                                                                                           |
| Steuerelement          | fett           | Die Schaltfläche <b>OK</b> / Der Befehl <b>Kopieren</b> / Die Register-<br>karte <b>Eigenschaften</b> / Das Eingabefeld <b>Name</b>                                                                                                         |
| Folge von Menübefehlen |                | Sind zum Ausführen einer Funktion mehrere Befehle nachei-<br>nander erforderlich, sind die einzelnen Befehle durch einen<br>Pfeil voneinander getrennt: Wählen Sie den Befehl<br>Datei→Öffnen, um                                           |
| Tastaturbefehl         | <fett></fett>  | Mit <b><f1></f1></b> rufen Sie die Online-Hilfe auf.                                                                                                                                                                                        |
|                        |                | Ist für einen Befehl eine Tastenkombination erforderlich, ist zwischen den Tastenbezeichnern ein "+" gesetzt: Mit <shift>+<esc></esc></shift>                                                                                               |
| Programmcode           | Courier        | IF var1 < var2 THEN                                                                                                                                                                                                                         |
| Schlüsselwort          | Courier fett   | a = a + 1<br>END IF                                                                                                                                                                                                                         |
| Hyperlink              | unterstrichen  | Optisch hervorgehobener Verweis auf ein anderes Thema.<br>Wird in dieser Online-Dokumentation per Mausklick aktiviert.                                                                                                                      |
| Symbole                |                |                                                                                                                                                                                                                                             |
| Seitenverweis          | (□ 8)          | Optisch hervorgehobener Verweis auf eine andere Seite.<br>Wird in dieser Online-Dokumentation per Mausklick aktiviert.                                                                                                                      |
| Schrittweise Anleitung |                | Schrittweise Anleitungen sind durch ein Piktogramm ge-<br>kennzeichnet.                                                                                                                                                                     |

Alle Informationen, die nur für oder ab einem bestimmten Firmwarestand des Inverters gelten, sind in dieser Dokumentation entsprechend gekennzeichnet.

## 1.2 Verwendete Begriffe & Abkürzungen

-----

## 1.2 Verwendete Begriffe & Abkürzungen

| Abkürzung | Begriff                     | Bedeutung                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| APPC      | Application-Controller      | Der Application-Controller dient als Schnittstelle zwischen dem Motor-Controller und der Fahrzeugsteuerung. Er bietet hierzu zwei CAN-Schnittstellen an: den "Public CAN" für den Anschluss an den Fahrzeug-Bus und den "Private CAN" für die Kommunikation mit dem Motor-Controller. Während im Motor-Controller immer dieselbe Firmware läuft, kann die APPC-Firmware durch kundenspezifische Firmware ersetzt werden. |
| ASM       | Asynchronmotor              |                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CAN       | Controller Area Network     | CAN ist ein asynchrones, serielles Feldbussystem.                                                                                                                                                                                                                                                                                                                                                                        |
|           | CANOPER                     | CANopen® ist ein auf CAN basierendes Kommunikationsprotokoll.  CANopen® ist eine eingetragene Gemeinschaftsmarke der CAN-Nutzerorganisation CiA® (CAN in Automation e. V.).                                                                                                                                                                                                                                              |
| DCC       | DC/DC-Controller (SW-Modul) | Dieses Firmwaremodul beinhaltet die Regelung des Bordnetzwandlers (isolierender DC/DC-Wandler).                                                                                                                                                                                                                                                                                                                          |
| DCU       | Drive Control Unit          | Inverter                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DLC       | DC-Link-Controller          | Dieses Firmwaremodul beinhaltet die Zwischenkreisregelung. Diese korrigiert anhand der gemessenen Zwischenkreisspannung die Sollwerte der Motoren und Bordnetzwandler, um die Zwischenkreisspannung innerhalbeines definierten Bereiches zu regeln und dadurch einen stabilen Betrieb zu ermöglichen.                                                                                                                    |
|           | Engineering Tool            | Software-Lösung für einfaches Engineering in allen Phasen.                                                                                                                                                                                                                                                                                                                                                               |
|           | Engineering-PC              | Mit dem Engineering-PC und den darauf installierten Engineering Tools konfigurieren und parametrieren Sie das System.                                                                                                                                                                                                                                                                                                    |
| FDB       | Feedback (SW-Modul)         | Dieses Firmwaremodul beinhaltet die Funktionen der Motorrückführung (Resolver).                                                                                                                                                                                                                                                                                                                                          |
| HV        | High Voltage                | Spannungsnetz in Fahrzeugen mit hoher Spannung (ca. > 50 V), bei dem ein Berührungsschutz notwendig ist.                                                                                                                                                                                                                                                                                                                 |
|           | Index                       | Jedes Objekt besitzt zwecks Adressierung einen eindeutigen Index.  Der Index ist in dieser Dokumentation als hexadezimaler Wert dargestellt und durch ein vorangestelltes "0x" gekennzeichnet, z. B. "0x1000".                                                                                                                                                                                                           |
| INV       | Inverter (SW-Modul)         | Dieses Firmwaremodul beinhaltet die Funktionen des Inverters und stellt sicher, dass dieser richtig arbeitet.                                                                                                                                                                                                                                                                                                            |
| KL15      | Klemme 15                   | Geschaltete Spannung des 12-V- oder 24-V-Bordnetzes zum Ein- und Ausschalten des Gerätes.                                                                                                                                                                                                                                                                                                                                |
| KL30      | Klemme 30                   | Dauernd anliegende Versorgungsspannung des 12-V- oder 24-V-Bordnetzes.                                                                                                                                                                                                                                                                                                                                                   |
| KL31      | Klemme 31                   | Minuspol des 12-V- oder 24-V-Bordnetzes (Fahrzeugmasse).                                                                                                                                                                                                                                                                                                                                                                 |
|           | Konfiguration               | Damit sind alle für den korrekten Betrieb notwendigen Daten und Einstellungen gemeint:  • Die Firmware des Application-Controllers  • Die Firmware des Motor-Controllers  • Alle Parametersätze  Ausgenommen von einer Konfiguration sind jedoch die Bootloader- und Herstellungsdaten.                                                                                                                                  |
|           | Voreinstellung              | Damit sind Einstellungen gemeint, mit denen das Gerät ab<br>Werk vorkonfiguriert ist.                                                                                                                                                                                                                                                                                                                                    |
| LV        | Low Voltage                 | Spannungsnetz in Fahrzeugen mit kleiner Spannung (ca. < 50 V), bei dem kein Berührungsschutz notwendig ist.                                                                                                                                                                                                                                                                                                              |

## Verwendete Begriffe & Abkürzungen

1.2

| Abkürzung | Begriff                                                     | Bedeutung                                                                                                                                                                                                                                                                                                                     |
|-----------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MC        | Motor-Controller (DSP)                                      | Digitaler Signalprozessor, welcher die Regelung der Motoren oder der DC/DC-Steller übernimmt. Dieser Controller ist auf max. Echtzeitfähigkeit optimiert.                                                                                                                                                                     |
| MCT       | Motor-Controller (SW-Modul)                                 | Dieses Firmwaremodul regelt den angeschlossenen Motor<br>so, dass der erhaltene Drehzahl- oder Drehmoment-Sollwert<br>an der Motorwelle erreicht wird.                                                                                                                                                                        |
| MOBILE    | MOBILE Drives                                               | Bucher Portfolio für MOBILE Frequenzumrichter                                                                                                                                                                                                                                                                                 |
| MOD       | Modulator (SW-Submodul)                                     | Pulsweitenmodulator zur Erzeugung einer Ausgangsspannung am Inverter-Ausgang.                                                                                                                                                                                                                                                 |
| NMT       | Network Management Telegram                                 | Kommunikationsobjekt (CAN-Telegramm) für die Übertragung von CAN-relevanten Steuerinformationen an bestimmte oder alle Teilnehmer des CAN-Netzwerks.                                                                                                                                                                          |
|           | Objekt                                                      | "Container" für einen oder mehrere Parameter, mit denen Sie<br>den MOBILE parametrieren oder überwachen können.                                                                                                                                                                                                               |
| PDO       | Process Data Object                                         | Kommunikationsobjekt (CAN-Telegramm) für die Übertragung von Prozessdaten.                                                                                                                                                                                                                                                    |
| PSM       | Permanenterregter Synchronmotor                             |                                                                                                                                                                                                                                                                                                                               |
| PSU       | Power Supply Unit                                           | DC/DC-Wandler                                                                                                                                                                                                                                                                                                                 |
| QSP       | Quickstop                                                   | Schnellhalt                                                                                                                                                                                                                                                                                                                   |
| SCD       | Scheduler (SW-Modul)                                        | Dieses Firmwaremodul beinhaltet den "Task Scheduler", welcher für das zeitgenaue Aufrufen der für die Regelung notwendigen Tasks verantwortlich ist.                                                                                                                                                                          |
| SDO       | Service Data Object                                         | Kommunikationsobjekt (CAN-Telegramm), welches durch<br>die innere Struktur die Übertragung von großen Datenmen-<br>gen oder das Schreiben und Lesen von einzelnen Parametern<br>(CAN-Objekten) ermöglicht.                                                                                                                    |
| SLVCI     | Sensorless Vector Control for Induction machines            | Sensorlose Vektorregelung für Asynchronmotoren                                                                                                                                                                                                                                                                                |
| SLVCS     | Sensorless Vector Control for Synchronous machines          | Sensorlose Vektorregelung für Synchronmotoren                                                                                                                                                                                                                                                                                 |
| SLVFCI    | Sensorless Voltage Frequency Control for Induction machines | Sensorlose U/f-Kennliniensteuerung für Asynchronmotoren                                                                                                                                                                                                                                                                       |
| SPV       | Supervisor (SW-Modul)                                       | Dieses Firmwaremodul überwacht den Gerätezustand und koordiniert den Geräteschutz.                                                                                                                                                                                                                                            |
|           | Subindex                                                    | Enthält ein Objekt mehrere Parameter, so sind diese in sogenannten "Subindizes" abgelegt. Als Trennzeichen zwischen der Angabe des Index und des Subindex wird in dieser Dokumentation der Doppelpunkt verwendet, z. B. "0x1018:0x01". Der Subindex ist in dieser Dokumentation ebenfalls als hexadezimaler Wert dargestellt. |
| VCI       | Vector Control for Induction machines                       | Vektorregelung für Asynchronmotoren                                                                                                                                                                                                                                                                                           |
| VCS       | Vector Control for Synchronous ma-<br>chines                | Vektorregelung für Synchronmotoren                                                                                                                                                                                                                                                                                            |
| VFCI      | Voltage Frequency Control for Induction machines            | U/f-Kennliniensteuerung für Asynchronmotoren                                                                                                                                                                                                                                                                                  |

### 1.3 Definition der verwendeten Hinweise

.\_\_\_\_\_

### 1.3 Definition der verwendeten Hinweise

Um auf Gefahren und wichtige Informationen hinzuweisen, werden in dieser Dokumentation folgende Signalwörter und Symbole verwendet:

#### Sicherheitshinweise

Aufbau der Sicherheitshinweise:



### Gefahr!

(kennzeichnet die Art und die Schwere der Gefahr)

#### Hinweistext

(beschreibt die Gefahr und gibt Hinweise, wie sie vermieden werden kann)

| Piktogramm  | Signalwort | Bedeutung                                                                                                                                                                                                                                |
|-------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A           | Gefahr!    | Gefahr von Personenschäden durch gefährliche elektrische Spannung<br>Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden. |
| $\triangle$ | Gefahr!    | Gefahr von Personenschäden durch eine allgemeine Gefahrenquelle<br>Hinweis auf eine unmittelbar drohende Gefahr, die den Tod oder schwere Verletzungen zur Folge haben kann, wenn nicht die entsprechenden Maßnahmen getroffen werden.   |
| STOP        | Stop!      | Gefahr von Sachschäden<br>Hinweis auf eine mögliche Gefahr, die Sachschäden zur Folge haben kann, wenn<br>nicht die entsprechenden Maßnahmen getroffen werden.                                                                           |

### Anwendungshinweise

| Piktogramm | Signalwort | Bedeutung                                        |
|------------|------------|--------------------------------------------------|
| i          | Hinweis!   | Wichtiger Hinweis für die störungsfreie Funktion |
|            | Tipp!      | Nützlicher Tipp für die einfache Handhabung      |
|            |            | Verweis auf andere Dokumentation                 |

#### Aufbau der Parameter-Beschreibungen

#### 1.4 Aufbau der Parameter-Beschreibungen

Alle Parameter, mit denen Sie den MOBILE parametrieren oder überwachen können, sind in sogenannten "Objekten" abgelegt.

- · Jedes Objekt besitzt zwecks Adressierung einen eindeutigen Index. Der Index ist in dieser Dokumentation als hexadezimaler Wert dargestellt und durch ein vorangestelltes "0x" gekennzeichnet, z. B. "0x1000".
- Enthält ein Objekt mehrere Parameter, so sind diese in sogenannten "Subindizes" abgelegt. Als Trennzeichen zwischen der Angabe des Index und des Subindex wird in dieser Dokumentation der Doppelpunkt verwendet, z. B. "0x1018:0x01".



### Hinweis!

Bei Parametern, die sich auf einen Motor oder Inverter beziehen, werden in der Parameter-Beschreibung beide Indizes (für Motor/Inverter A und Motor/Inverter B) aufgeführt.

- Für den MOBILE DCU (ein Inverter) ist in diesem Fall nur der erste Index für Motor/ Inverter A relevant.
- Für den MOBILE DCU PSU (ein Inverter und Bordnetzwandler) ist in diesem Fall nur der zweite Index für Motor/Inverter B relevant.

Jede Parameter-Beschreibung ist nach folgendem Schema aufgebaut:

|            |                                                                      | rofile Inverter A/ | B vI velocity max min        |                            |          |
|------------|----------------------------------------------------------------------|--------------------|------------------------------|----------------------------|----------|
| 0          | Sub.                                                                 | Name               |                              | Lenze-Einstellung          | Datentyp |
|            | ▶ <u>0x01</u>                                                        | max                |                              | 3000.000000 rev/min        | INT32    |
|            | ▶ <u>0x02</u>                                                        | min                |                              | -3000.000000 rev/min       | INT32    |
| 6          | Subindex                                                             | x 0x01: max        |                              |                            |          |
|            | Obere Dr                                                             | rehzahlgrenze      |                              |                            |          |
|            | Skalierur                                                            | ngsfaktor          | Einstellbereich              | Lenze-Einstellung          | Datentyp |
|            | 6.103515625000E-005 -131072 131072 rev/min 3000.000000 rev/min INT32 |                    |                              |                            | INT32    |
| 6          | Subindex                                                             | 0x02: min          |                              |                            |          |
|            | Untere D                                                             | rehzahlgrenze      |                              |                            |          |
|            | Skalierur                                                            | ngsfaktor          | Einstellbereich              | Lenze-Einstellung          | Datentyp |
|            | 6.103515                                                             | 625000E-005        | -131072 131072 rev/min       | -3000.000000 rev/min       | INT32    |
| oiektindex | für Gerä                                                             | <br>ät. Bordnetzw  | andler oder Motor/Inverter A |                            |          |
|            |                                                                      |                    | (bei Doppel-Inverter)        |                            |          |
| rameter-   | bzw. Obi                                                             | ektname            |                              |                            |          |
|            |                                                                      |                    |                              | e mit Auflistung aller Sub |          |



Um in dieser Dokumentation ein bestimmtes Objekt bzw. einen bestimmten Parameter zu finden: Im Index sind alle Objekte/Parameter mit einem Verweis zur ausführlichen Beschreibung aufgeführt.

## 2 Rechtliche Hinweise

\_\_\_\_\_

### 2 Rechtliche Hinweise

Das Produkt von Bucher enthält keine Sicherheitsfunktionen und kein Sicherheitssystem. Das Produkt darf ohne Sicherheitssystem keine Sicherheitsfunktionen wahrnehmen. Der Kunde ist für das Sicherheitssystem verantwortlich. Bei Verwendung des Produkts für eine Sicherheitsfunktion ohne Sicherheitssystem schliesst Bucher jegliche Haftung aus.

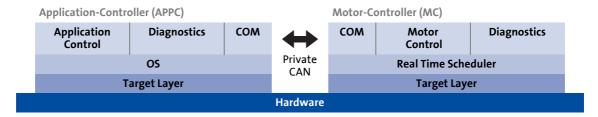
#### 3.1 Interne Prozessor-Architektur

-----

### 3 Einführung: Das Gerät parametrieren und bedienen

Der MOBILE muss als Bestandteil einer Maschine mit drehzahlverstellbaren Antriebssystem an seine Antriebsaufgabe angepasst werden. Die Anpassung des MOBILE erfolgt durch das Ändern von Parametern, die im Gerät gespeichert werden. Der Zugriff auf diese Parameter erfolgt über den CAN-Bus.

#### 3.1 Interne Prozessor-Architektur

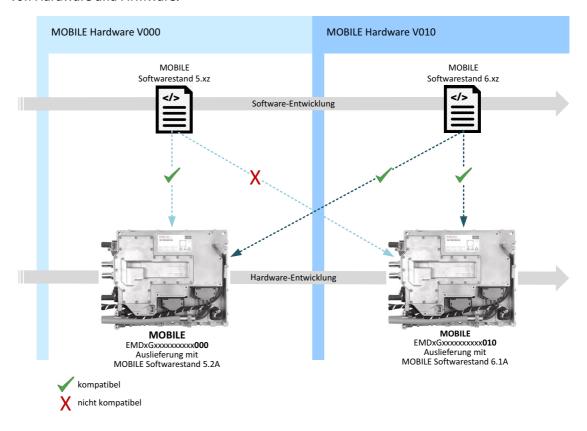

Der MOBILE wird von zwei Mikrocontrollern gesteuert:

- Ein leistungsfähiger auf Echtzeitregelung optimierter Microcontroller regelt die beiden Motoren oder den DC/DC-Wandler und wird in diesem Dokument "Motor-Controller (MC)" genannt.
- Ein zweiter Controller, der sogenannte "Application-Controller (APPC)", übernimmt die Steuerung und die Integration der Nebenaggregate ins Fahrzeug und stellt eine leistungsfähige Diagnose nach UDS (Unified Diagnostic Services) zur Verfügung.

Durch die Aufteilung dieser Aufgaben auf zwei getrennte Prozessoren werden Anpassungen an kundenspezifische Anforderungen für Fahrzeugkommunikation und Diagnose von der Echtzeitregelung der Maschinen getrennt und damit der SW-Verifikationsaufwand deutlich reduziert.

Für den Kunden ist nur der Application-Controller (APPC) sichtbar. Dieser übernimmt sämtliche für die Regelung aller ihm zugeteilten Antriebe und Bordnetzwandler notwendigen Kommunikationsaufgaben und Parametrierungen. Er verwaltet die einzelnen Parameter sowie die Gruppen von Parametern, welche als Datensätze bezeichnet werden und sorgt dafür, dass der Motor-Controller (MC) die gewünschten Funktionen ausführt.

Im SW-Updateprozess werden durch zwei Flash-Vorgänge des Application-Controllers sämtliche Geräteeinstellungen (inklusive der Firmware für beide Controller) und ein Datensatz mit mehreren Parametersätzen in den MOBILE übertragen und gespeichert. Dieser Prozess stellt sicher, dass nur zum Gerät und zueinander passende Kombinationen von Firmware und Datensatz in Betrieb genommen werden können. Mögliche Inkompatibilitäten werden damit grundsätzlich vermieden.




3.2 Hardware-/Firmware-Kompatibilität

\_\_\_\_\_\_

### 3.2 Hardware-/Firmware-Kompatibilität

Für den SW-Updateprozess gelten die folgenden Abhängigkeiten zwischen den Versionsständen von Hardware und Firmware:



3.3 Sicherheitsanwendungen

-----

### 3.3 Sicherheitsanwendungen

Das Produkt von Bucher enthält keine Sicherheitsfunktionen und kein Sicherheitssystem. Das Produkt darf ohne Sicherheitssystem keine Sicherheitsfunktionen wahrnehmen.

#### 3.4 Kundenschnittstellen

-----

#### 3.4 Kundenschnittstellen

Der MOBILE kann über die folgenden Kundenschnittstellen bedient werden:

- Public CAN: Kommunikation mit Fahrzeug oder Subsystem-Steuerung (z. B. Klimaanlage) nach SAE J1939 / UDS
- Private CAN: Kommunikation mit Subsystem oder anderen Antrieben nach CANopen
- Steuerung über digitale Klemmen (Ein/Aus)

### 3.4.1 Bedienung über Public CAN nach SAE J1939

Der <u>Public CAN</u> ist die für Anwendungen in Nutzfahrzeugen vorgesehene Kundenschnittstelle, welche an die jeweiligen Kommunikations- und Diagnoseumgebungen der einzelnen OEM's angepasst werden kann. Standardmässig wird eine Steuerung nach SAE J1939 und eine Diagnose nach UDS (Unified Diagnostic Services) angeboten, welche im Application-Controller implementiert ist.

Die nach SAE J1939 spezifizierten Botschaften für Nebenaggregate sind nicht implementiert (PGN 61654 – DC/AC ACCESSORY INVERTER und folgende PGN).

### 3.4.2 Bedienung über Private CAN nach CANopen

Der Application-Controller und der Motor-Controller sind über den Private CAN (CAN 2.0A) verbunden und kommunizieren nach CANopen gemäß dem Drive Profile DS 402. Über diese Private CAN-Schnittstelle leitet der Application-Controller die über den Public CAN erhaltenen Steuerbefehle an den (oder an mehrere) Motor-Controller weiter. Dabei werden die Steuerbefehle auf die vorhandenen Antriebe abgebildet und notwendige Umrechnungen vorgenommen. Umgekehrt leitet der Application-Controller die vom Motor-Controller (oder von mehreren Motor-Controllern) erhaltenen Statusinformationen (Istwerte oder Fehlerinformationen) über den Public CAN an die übergeordnete Steuerung weiter.

Durch diese Auftrennung ist es in speziellen Anwendungsfällen möglich, den oder die Motor-Controller und damit die angeschlossenen Motoren und Aggregate direkt über den Private CAN anzusteuern. In diesem Fall wird das CANopen-Protokoll verwendet.

Der Private CAN dient gleichzeitig als Konfigurations- und Diagnose-Schnittstelle, über welche komplexe Antriebsfunktionen geprüft und diagnostiziert werden können. Er steht bei der Inbetriebnahme als Rückfallebene zur Verfügung, falls der Public CAN (Fahrzeug-CAN) nicht die notwendige freie Bandbreite aufweist oder die Service-Tools nicht in der Lage sind, die Echtzeitinformationen zu verarbeiten. Diese Schnittstelle ist robust genug, um sowohl im Feld wie auch im Labor eine zuverlässige Diagnose sicherzustellen.

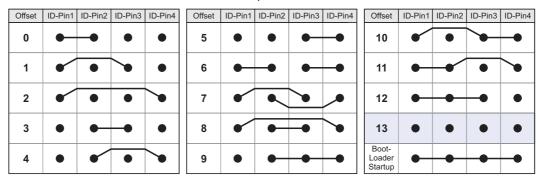
#### 3.4.3 Bedienung über Klemmen

Für jeden der vier Eingänge FLX\_IN1 ... FLX\_IN4 gibt es einen Parameter, mit dem die Funktion des Eingangs konfiguriert werden kann. Für jeden der vier Ausgänge FLX\_OUT1 ... FLX\_OUT4 gibt es ebenfalls einen Parameter, mit dem die Funktion des Ausgangs konfiguriert werden kann.

- ▶ FLX IN1 ... FLX IN4 (□ 49)
- ▶ FLX OUT1 ... FLX OUT4 (□ 56)

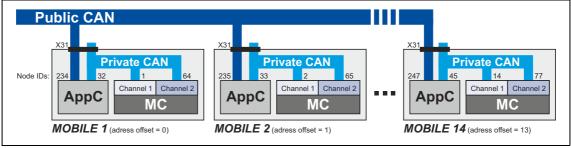
3.5 Geräte-Identifikation

\_\_\_\_\_


#### 3.5 Geräte-Identifikation

### 3.5.1 MOBILE DCU, PSU, DCU PSU

### **CAN-Adressvergabe**


An einem CAN-Bus können maximal 14 MOBILEs betrieben werden. Jeder MOBILE besitzt eine CAN-Adresse für den Public CAN sowie drei CAN-Adressen für den Private CAN. Die CAN-Adressen ergeben sich aus einer individuellen Basis-Adresse (parametrierbar) plus einem Adress-Offset (0 ... 13).

Der Adress-Offset wird durch Brücken zwischen vier Anschlüssen an X31, den sogenannten ID-Pins, definiert. Sind die vier ID-Pins nicht verschaltet, ist der Adress-Offset = 13:



[3-1] Einstellung des Adress-Offset über die ID-Pins an X31

Die folgende Darstellung zeigt das Prinzip der CAN-Adressvergabe bei Verwendung der voreingestellten Basis-Adressen:



[3-2] Adressvergabe für Public CAN und Private CAN

Die Basis-Adressen lassen sich bei Bedarf über folgende Objekte des Application-Controllers ändern:

| Objekt      | Name         | Info                                                                                                                                                                                                                                     | Voreinstellung |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 0x4020:0x02 | baseAddr     | Public CAN-Basisadresse                                                                                                                                                                                                                  | 234            |
| 0x4030:0x02 | baseAddrAppc | Private CAN-Basisadresse des APPC                                                                                                                                                                                                        | 32             |
| 0x4030:0x03 | baseAddrMc   | Private CAN-Basisadresse des MC (Kanal 1)  • Ab Version CECA0AA007A des MC-Bootloaders und ab Firmware 06.0 ist eine Kommunikation über Kanal 1 und Kanal 2 möglich.                                                                     | 1              |
|             |              | Private CAN-Basisadresse des MC (Kanal 2)  • Die CAN-Basisadresse von Kanal 2 besitzt einen festen Offset von 63 zur eingestellten baseAddrMc.  Hinweis: Verwenden Sie den Kanal 2 für externe Diagnose-Tools (z. B. »MOBILE Engineer«). | 64             |

3.5 Geräte-Identifikation

------

### **Boot-Loader Startup**

Im Modus "Boot-Loader Startup" sind folgende Einstellungen aktiv:

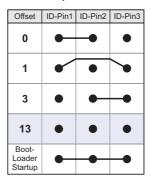
- Public CAN-Adresse = 246 (fest)
- Baudrate = 250 kbps (fest)
- Kein Zugriff auf den Private CAN

#### **MOBILE-Gerätenummer**

Um bei mehreren MOBILEs im selben Netzwerk gezielt ein bestimmtes Gerät ansprechen zu können, besitzt jeder MOBILE eine Gerätenummer (1 ... 14), die dem eingestellten Adress-Offset (ID-Pins) plus 1 entspricht.

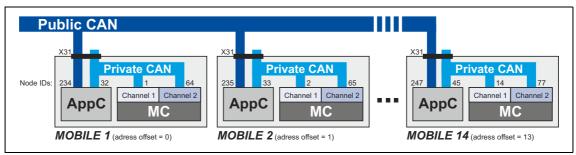
- Die Gerätenummer ist Bestandteil der "Broadcast"-PGN. <u>Parameter Group Number (PGN)</u>
   (2) 171)
- Die Gerätenummer wird in der Public CAN-Sendebotschaft "Gerätestatus des MOBILE" angezeigt. (☐ 179)

3.5 Geräte-Identifikation


\_\_\_\_\_

#### 3.5.2 MOBILE DCU S

#### **CAN-Adressvergabe**


An einem CAN-Bus können maximal 4 MOBILEs betrieben werden. Jeder MOBILE besitzt eine CAN-Adresse für den Public CAN sowie drei CAN-Adressen für den Private CAN. Die CAN-Adressen ergeben sich aus einer individuellen Basis-Adresse (parametrierbar) plus einem Adress-Offset (0, 1, 3, 13).

Der Adress-Offset wird durch Brücken zwischen drei Anschlüssen an X1, den sogenannten ID-Pins, definiert. Sind die drei ID-Pins nicht verschaltet, ist der Adress-Offset = 13:



#### [3-3] Einstellung des Adress-Offset über die ID-Pins an X1

Die folgende Darstellung zeigt das Prinzip der CAN-Adressvergabe bei Verwendung der voreingestellten Basis-Adressen:



[3-4] Adressvergabe für Public CAN und Private CAN

Die Basis-Adressen lassen sich bei Bedarf über folgende Objekte des Application-Controllers ändern:

| Objekt      | Name         | Info                                                                                                                                                                                                                                     | Voreinstellung |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 0x4020:0x02 | baseAddr     | Public CAN-Basisadresse                                                                                                                                                                                                                  | 234            |
| 0x4030:0x02 | baseAddrAppc | Private CAN-Basisadresse des APPC                                                                                                                                                                                                        | 32             |
| 0x4030:0x03 | baseAddrMc   | Private CAN-Basisadresse des MC (Kanal 1)  • Ab Version CEDA0AA007A des MC-Bootloaders und ab Firmware 06.0 ist eine Kommunikation über Kanal 1 und Kanal 2 möglich.                                                                     | 1              |
|             |              | Private CAN-Basisadresse des MC (Kanal 2)  • Die CAN-Basisadresse von Kanal 2 besitzt einen festen Offset von 63 zur eingestellten baseAddrMc.  Hinweis: Verwenden Sie den Kanal 2 für externe Diagnose-Tools (z. B. »MOBILE Engineer«). | 64             |

3.5 Geräte-Identifikation

------

### **Boot-Loader Startup**

Im Modus "Boot-Loader Startup" sind folgende Einstellungen aktiv:

- Public CAN-Adresse = 246 (fest)
- Baudrate = 250 kbps (fest)
- Kein Zugriff auf den Private CAN

#### **MOBILE-Gerätenummer**

Um bei mehreren MOBILEs im selben Netzwerk gezielt ein bestimmtes Gerät ansprechen zu können, besitzt jeder MOBILE eine Gerätenummer (1 ... 4), die dem eingestellten Adress-Offset (ID-Pins) plus 1 entspricht.

- Die Gerätenummer ist Bestandteil der "Broadcast"-PGN. <u>Parameter Group Number (PGN)</u>
   (2) 171)
- Die Gerätenummer wird in der Public CAN-Sendebotschaft "Gerätestatus des MOBILE" angezeigt. (© 179)

6 Parametereinstellungen verändern

\_\_\_\_\_\_

#### 3.6 Parametereinstellungen verändern

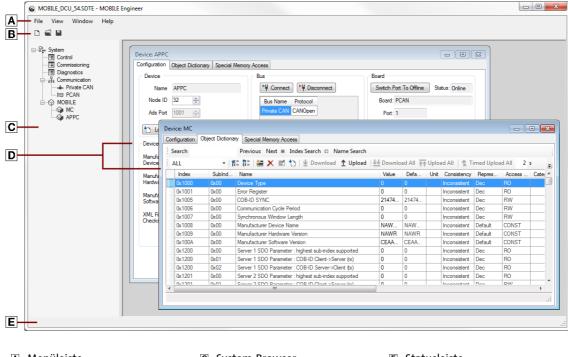
Zur Online-Diagnose, Parametrierung und Inbetriebnahme des MOBILE stehen die Engineering Tools »MOBILE Engineer« und »MOBILE Starter« zur Verfügung. Sie kommunizieren mit dem MOBILE über die Schnittstellen Private CAN bzw. Public CAN. Der »MOBILE Engineer« hat Zugriff auf das Objektverzeichnis des Application- und Motor-Controllers.

<u>MOBILE Panels</u> erweitern die Funktionalität des »MOBILE Engineer«. Mit MOBILE Panels können verschiedene Tätigkeiten vereinfacht und automatisiert werden.

Für die Kommunikation zwischen PC (mit darauf installierter Software »MOBILE Engineer« bzw. »MOBILE Starter«) und MOBILE kann z.B. der PC-Systembusadapter IPEH-002022 (Peak System) (USB-Schnittstelle) verwendet werden:

- PC-Systembusadapter an die jeweilige CAN-Schnittstelle des MOBILE anschließen.
- PC-Systembusadapter mit dem PC über einen freien USB-Port verbinden.

Gegenüber dem »MOBILE Engineer« hat der »MOBILE Starter« einen reduzierten Funktionsumfang. Die beiden Engineering Tools unterscheiden sich in den Bereichen MOBILE Panels und Trace-Funktion.


### Funktionsumfang »MOBILE Engineer« und »MOBILE Starter«

| Bereich                                                            | »MOBILE Engineer« | »MOBILE Starter« |
|--------------------------------------------------------------------|-------------------|------------------|
| MOBILE Panel                                                       |                   |                  |
| MOBILE Diagnostics: Device Identification Public CAN               | •                 | •                |
| MOBILE Diagnostics: Event Memory Public CAN                        | •                 | •                |
| MOBILE Diagnostics: Application Data Upload Public Private CAN     | •                 | -                |
| MOBILE Commissioning: CanIdScan Public and Private CAN             | •                 | •                |
| MOBILE Commissioning: Firmware Download Public CAN                 | •                 | •                |
| MOBILE Commissioning: Dataset Upload Public CAN                    | •                 | •                |
| MOBILE Commissioning: Parameter Manager                            | •                 | -                |
| MOBILE Commissioning: DC Control Private CAN                       | •                 | -                |
| MOBILE Commissioning: SLVFCI Private CAN                           | •                 | -                |
| MOBILE Commissioning: VCI/SLVCI Private CAN                        | •                 | -                |
| MOBILE Commissioning: VCS/SLVCS Private CAN                        | •                 | -                |
| MOBILE Commissioning: Feedback Private CAN                         | •                 | -                |
| MOBILE Commissioning: Resolver Settings Private CAN                | •                 | -                |
| MOBILE Commissioning: Speed Controller Private CAN                 | •                 | -                |
| MOBILE Commissioning: Motor Control Inverter A/B Private CAN       | •                 | -                |
| MOBILE Commissioning: Summary of different UDS Services Public CAN | •                 | -                |
| Trace-Funktion                                                     |                   |                  |
| Online                                                             | •                 | -                |
| Offline                                                            | •                 | _                |

Parametereinstellungen verändern

#### 3.6.1 Benutzeroberfläche

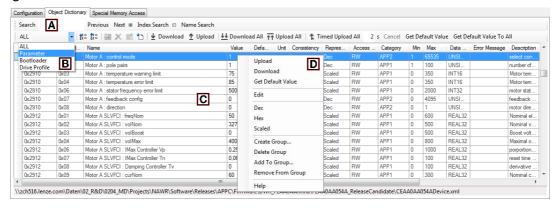
Der »MOBILE Engineer« beinhaltet folgende Steuer- und Funktionselemente:



A Menüleiste

- © System-Browser
- **E** Statusleiste

- **B** Symbolleiste
- Konfigurationsfenster


Wenn Sie im System-Browser auf ein Element klicken, wird das zugehörige Konfigurationsfenster geöffnet. Es können mehrere Konfigurationsfenster zeitgleich geöffnet sein. Über die Befehle im Menü Window lassen sich die geöffneten Fenster verwalten (z. B. im Arbeitsbereich neben- oder untereinander anordnen).

3.6 Parametereinstellungen verändern

\_\_\_\_\_

### 3.6.2 Objektverzeichnis

Bei bestehender Online-Verbindung zum MOBILE werden Ihnen auf der Registerkarte **Object Dictionary** die aktuellen Parametereinstellungen des Application- bzw. Motor-Controllers angezeigt und können hierüber auch verändert werden:



- Suchleiste für die Suche nach einem bestimmten Index oder Objektnamen
- **B** Listenfeld **Gruppenauswahl** zur Filterung der Objektliste
- © Objektliste (enthält alle Objekte der im Listenfeld Gruppenauswahl ausgewählten Gruppe)
- Kontextmenü (Aufruf über rechte Maustaste)

#### **Object Dictionary-Symbolleiste**

| Symbol/Befehl                 |                             | Funktion                                                                                                                                                                        |
|-------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [t =                          |                             | Gruppen importieren                                                                                                                                                             |
| tc=<br>[c=                    |                             | Gruppen exportieren                                                                                                                                                             |
| *-                            |                             | Neues Objekt im Objektverzeichnis anlegen                                                                                                                                       |
| X                             |                             | Ausgewähltes Objekt löschen                                                                                                                                                     |
| ď                             |                             | Ausgewähltes Objekt bearbeiten                                                                                                                                                  |
| *                             |                             | Device-XML laden                                                                                                                                                                |
| <b>∓</b>                      | Download                    | Ausgewähltes Objekt zum Gerät schreiben                                                                                                                                         |
| $\overline{\uparrow\uparrow}$ | Download All                | Alle Objekte zum Gerät schreiben                                                                                                                                                |
| <u>↑</u>                      | Upload                      | Ausgewähltes Objekt vom Gerät lesen                                                                                                                                             |
| ŤŤ                            | Upload All                  | Alle Objekte vom Gerät lesen                                                                                                                                                    |
| 1                             | Timed Upload All            | Alle Objekte zyklisch vom Gerät lesen  • Im Eingabefeld hinter dem Befehl ist der Zeitintervall in [s] einstellbar.  • Mit Cancel könne Sie das zyklische Lesen wieder beenden. |
|                               | Get Default Value           | Ausgewähltes Objekt auf Voreinstellung zurücksetzen  • Der Wert im Gerät ändert sich erst, wenn das Objekt zum Gerät geschrieben wird (Download).                               |
|                               | Get Default Value To<br>All | Alle Objekte auf Voreinstellung zuücksetzen  • Die Werte im Gerät ändern sich erst, wenn die Objekte zum Gerät geschrieben werden (Download).                                   |

-----

#### Parameter-Kategorien

Bei den Parametern gibt es folgende Parameter-Kategorien:

| Kategorie | Info                                                                                                                                                                                                                                                                            |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| АРР       | Für die Applikation und die Motorregelung relevante Parameter. Diese Parameter sind veränderbar und können im nicht flüchtigen Speicher abgelegt werden.                                                                                                                        |
| APP1      | Nicht betriebsgeschützte Parameter, die in jedem Zustand verändert werden dürfen und sofort übernommen werden (z.B. Reglerparameter, Limitierungen).                                                                                                                            |
| APP2      | Betriebsgeschützte Parameter, die nur verändert werden dürfen, wenn der betreffende Inverter ausgeschaltet ist. Nach dem Wiedereinschalten werden die geänderten Parameter übernommen (z. B. Modes of Operation, Application).                                                  |
| APP3      | Betriebsgeschützte Parameter, die nur verändert werden dürfen, wenn beide Inverter ausgeschaltet sind. Nach dem Wiedereinschalten werden die geänderten Parameter übernommen (z.B. Option Config).                                                                              |
| APP4      | Neustart erzwingende Parameter, die erst nach einem Reset über Klemme 15 übernommen werden (z.B. Baudrate, Node-ID, Position Device Type, Supply Config). Parametersätze, die Parameter dieser Kategorie verändern, dürfen nicht per Parametersatzumschaltung aktiviert werden. |
| CMD       | Diese Parameter sind Variablen (Sollwerte), welche als CAN-Objekte zur Verfügung stehen und beim Beschreiben (per SDO- oder PDO-Transfer) mit bestimmten Werten gewisse Aktionen auslösen.                                                                                      |
| DIA       | An die Firmware gebundene Parameter und Variablen, welche ausschließlich für Firmware-Tests verwendet werden. Diese Parameter sind teilweise veränderbar, können aber nicht gespeichert werden.                                                                                 |
| MAP       | Parameter für das PDO-Mapping.                                                                                                                                                                                                                                                  |

Parameteränderungen beim APPC werden wirksam:

- Nach dem Speichern der Parameter und anschließendem Neustart.
- Bei einer Parametersatzumschaltung sofort. Es gelten dann die Kriterien nach Parameter-Kategorie.



### Hinweis!

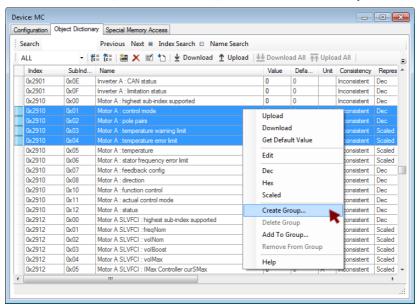
Parametersätze, die Parameter der Kategorie MAP enthalten und dadurch das PDO-Mapping verändern, dürfen nicht per Parametersatzumschaltung aktiviert werden!

#### Anzeige-Filter für das Objektverzeichnis verwenden

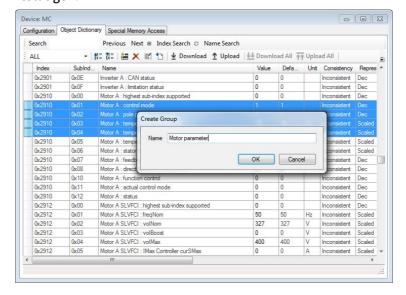
Wenn im Listenfeld **Gruppenauswahl** der Eintrag "ALL" ausgewählt ist, werden in der *Objektliste* alle CANopen-Objekte des jeweiligen Controllers angezeigt:



Durch Auswahl einer anderen Gruppe können Sie Anzeige "filtern". Wenn Sie beispielsweise die Gruppe "Parameter" auswählen, werden nur noch die parametrierbaren Objekte angezeigt.


Für einen schnellen Zugriff auf häufig benötigte Objekte können Sie auch neue Gruppen anlegen.

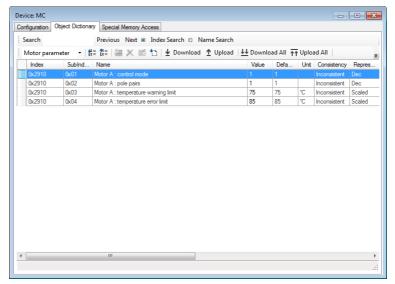
Parametereinstellungen verändern


.\_\_\_\_\_

## So legen Sie eine neue Gruppe an:

- 1. In der Objektliste die Objekte auswählen, die der neuen Gruppe angehören sollen.
  - Mit gedrückt gehaltener **<Strg>**-Taste ist eine Mehrfachauswahl möglich.
  - Mit gedrückt gehaltener <Shift>-Taste ist eine Bereichsauswahl möglich.
  - Einer Gruppe lassen sich auch nachträglich noch weitere Objekte hinzufügen.
- 2. Über das Kontextmenü (rechte Maustaste) den Befehl Create Group... ausführen:




3. Im Dialogfeld *Create Group* einen Namen für die neue Gruppe eingeben und die Eingabe mit **OK** bestätigen:



## 3.6 Parametereinstellungen verändern

-----

Die neue Gruppe wird dem Listenfeld **Gruppenauswahl** hinzugefügt. In der *Objektliste* werden nun nur noch die der Gruppe zugewiesenen Objekte angezeigt:



### Gruppen-relevante Funktionen im Kontextmenü

| Kontextmenü-Befehl | Funktion                                                           |
|--------------------|--------------------------------------------------------------------|
| Create Group       | Neue Gruppe mit den ausgewählten Objekten anlegen                  |
| Delete Group       | Aktuell angezeigte Gruppe löschen                                  |
| Add To Group       | Ausgewählte Objekte zu einer bereits vorhandenen Gruppe hinzufügen |
| Remove From Group  | Ausgewählte Objekte aus der Gruppe entfernen                       |

3.7 Parametereinstellungen permanent im MOBILE speichern

\_\_\_\_\_

### 3.7 Parametereinstellungen permanent im MOBILE speichern

Wenn Sie über den »MOBILE Engineer«/»MOBILE Starter« oder von einer übergeordneten Steuerung per CAN-Kommunikation Parametereinstellungen im MOBILE verändern, gehen die durchgeführten Änderungen bei Wegfall der Versorgungsspannung verloren, sofern die Einstellungen nicht im MOBILE gespeichert wurden.

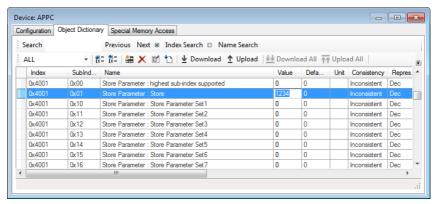
#### Parametereinstellungen über Private CAN speichern

Der Application-Controller (APPC) stellt die CAN Objekte zum Speichern der Parametereinstellungen in verschiedene Parametersätze zur Verfügung. Ein Schreibzugriff mit dem Wert "1234" löst den Vorgang aus.



### Hinweis!

- Die Werte werden mittels Store-Kommando permanent im Flash-Speicher gespeichert.
- Per Upload auf das gleiche Objekt können Sie prüfen, ob der Speicherbefehl erfolgreich war (1234 = Store successfully completed).


| Index       | Name                  | Beschreibung                                                                                                                                      |
|-------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x4001:0x01 | Store                 | Aktuelle Parameter in den Parametersatz speichern, der durch die ID-Pins gewählt wurde.  ► MOBILE DCU, PSU, DCU PSU (□ 18)  ► MOBILE DCU S (□ 20) |
| 0x4001:0x10 | Store Parameter Set1  | Aktuelle Parameter in Parametersatz 1 speichern                                                                                                   |
| 0x4001:0x11 | Store Parameter Set2  | Aktuelle Parameter in Parametersatz 2 speichern                                                                                                   |
| 0x4001:0x12 | Store Parameter Set3  | Aktuelle Parameter in Parametersatz 3speichern                                                                                                    |
| 0x4001:0x13 | Store Parameter Set4  | Aktuelle Parameter in Parametersatz 4 speichern                                                                                                   |
| 0x4001:0x14 | Store Parameter Set5  | Aktuelle Parameter in Parametersatz 5 speichern                                                                                                   |
| 0x4001:0x15 | Store Parameter Set6  | Aktuelle Parameter in Parametersatz 6 speichern                                                                                                   |
| 0x4001:0x16 | Store Parameter Set7  | Aktuelle Parameter in Parametersatz 7 speichern                                                                                                   |
| 0x4001:0x17 | Store Parameter Set8  | Aktuelle Parameter in Parametersatz 8 speichern                                                                                                   |
| 0x4001:0x18 | Store Parameter Set9  | Aktuelle Parameter in Parametersatz 9 speichern                                                                                                   |
| 0x4001:0x19 | Store Parameter Set10 | Aktuelle Parameter in Parametersatz 10 speichern                                                                                                  |
| 0x4001:0x1A | Store Parameter Set11 | Aktuelle Parameter in Parametersatz 11 speichern                                                                                                  |
| 0x4001:0x1B | Store Parameter Set12 | Aktuelle Parameter in Parametersatz 12 speichern                                                                                                  |
| 0x4001:0x1C | Store Parameter Set13 | Aktuelle Parameter in Parametersatz 13 speichern                                                                                                  |
| 0x4001:0x1D | Store Parameter Set14 | Aktuelle Parameter in Parametersatz 14 speichern                                                                                                  |

3.7 Parametereinstellungen permanent im MOBILE speichern

-----

### Parametereinstellungen über »MOBILE Engineer«/»MOBILE Starter« netzausfallsicher speichern

- Wählen Sie im Application-Controller (APPC) das Objekt 0x4001 (Store Parameter).
- Stellen Sie im gewünschten Subindex (0x01 ... 0x1D) den Wert "1234" ein und bestätigen Sie die Eingabe mit <ENTER>.



3.8 Parametersatz laden

-----

#### 3.8 Parametersatz laden

Durch das Laden eines Parametersatzes werden die aktiven Parameter im MOBILE überschrieben. Voraussetzung für das erfolgreiche Laden ist ein gültiger Parametersatz. Bei einem fehlerhaften Laden wechselt der MOBILE in den Fehlerzustand. Gerätestatus ( 37)

#### Parametersatz über Private CAN laden

Der Application-Controller (APPC) stellt die CAN Objekte zum Laden der verschiedenen Parametersätze zur Verfügung. Ein Schreibzugriff mit dem Wert "1234" löst den Vorgang aus.



### Hinweis!

• Per Upload auf das gleiche Objekt können Sie prüfen, ob der Speicherbefehl erfolgreich war (1234 = Store successfully completed).

| Index       | Name                    | Beschreibung                                                                                                            |
|-------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------|
| 0x4002:0x01 | Restore                 | Den Parametersatz laden, der durch die ID-Pins gewählt wurde.  ► MOBILE DCU, PSU, DCU PSU (□ 18)  ► MOBILE DCU S (□ 20) |
| 0x4002:0x10 | Restore Parameter Set1  | Parametersatz 1 laden                                                                                                   |
| 0x4002:0x11 | Restore Parameter Set2  | Parametersatz 2 laden                                                                                                   |
| 0x4002:0x12 | Restore Parameter Set3  | Parametersatz 3laden                                                                                                    |
| 0x4002:0x13 | Restore Parameter Set4  | Parametersatz 4 laden                                                                                                   |
| 0x4002:0x14 | Restore Parameter Set5  | Parametersatz 5 laden                                                                                                   |
| 0x4002:0x15 | Restore Parameter Set6  | Parametersatz 6 laden                                                                                                   |
| 0x4002:0x16 | Restore Parameter Set7  | Parametersatz 7 laden                                                                                                   |
| 0x4002:0x17 | Restore Parameter Set8  | Parametersatz 8 laden                                                                                                   |
| 0x4002:0x18 | Restore Parameter Set9  | Parametersatz 9 laden                                                                                                   |
| 0x4002:0x19 | Restore Parameter Set10 | Parametersatz 10 laden                                                                                                  |
| 0x4002:0x1A | Restore Parameter Set11 | Parametersatz 11 laden                                                                                                  |
| 0x4002:0x1B | Restore Parameter Set12 | Parametersatz 12 laden                                                                                                  |
| 0x4002:0x1C | Restore Parameter Set13 | Parametersatz 13 laden                                                                                                  |
| 0x4002:0x1D | Restore Parameter Set14 | Parametersatz 14 laden                                                                                                  |

#### Parametersatz über Eingänge FLX IN1 ... FLX IN4 laden

Zum Laden eines Parametersatzes über FLX\_IN1 ... FLX\_IN4 muss der Eingang mit der entsprechenden Funktion belegt sein.

- MOBILE DCU, PSU, DCU PSU (☐ 18)
- MOBILE DCU S (☐ 20)

Durch eine Pegeländerung am Eingang wird der Parametersatz geladen. Weitere Pegeländerungen haben keine Auswirkungen. Erst wenn das Laden des Parametersatzes abgeschlossen ist, kann erneut ein Parametersatz geladen werden.

Das Laden eines Parametersatzes ist auch über UDS möglich:

• \$31: Routine Control, \$FE01: Store Parameter Set

#### 3.9 MOBILE Panels

\_\_\_\_\_

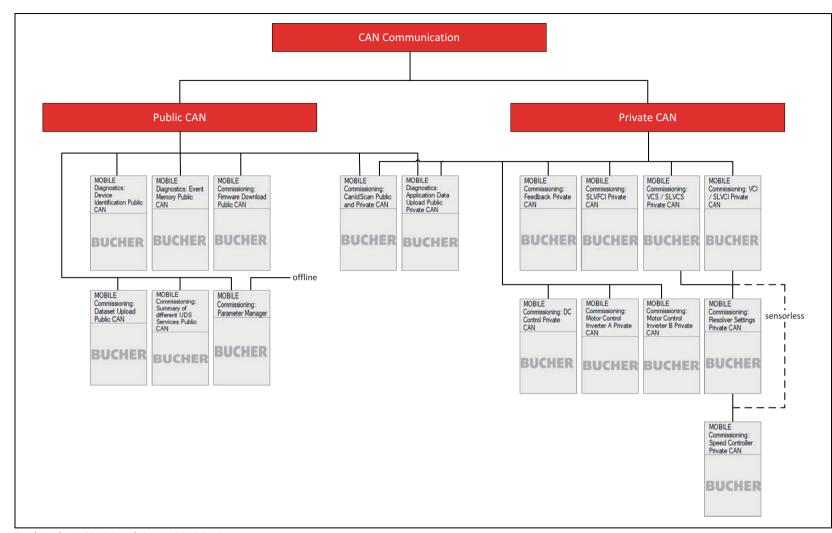
#### 3.9 MOBILE Panels

MOBILE Panels erweitern die Funktionalität des »MOBILE Engineer« und »MOBILE Starter«. Mit den MOBILE Panels können verschiedene Tätigkeiten vereinfacht und automatisiert werden, beispielsweise:

- · Firmware-Download
- Dataset-Download
- Parametrierung des Asynchronmotors oder Synchronmotors
- Parametrierung des Inverters, Resolvers, DC/DC-Wandlers
- · Konfiguration von Sensoren
- Auslesen des Event-Speichers
- Steuerung von Motor oder DC/DC-Wandler
- · Diagnose der angeschlossenen Geräte

Für die unterschiedlichen Aufgaben und Anwendungen stehen verschiedene MOBILE Panels zur Verfügung. Nach der Installation sind die MOBILE Panels als Apps im Engineering-Tool verfügbar.

Beim »MOBILE Starter« ist nach der Installation eine eingeschränke Anzahl an MOBILE Panels verfügbar:


- MOBILE Commissioning: CanldScan Public and Private CAN
- MOBILE Commissioning: Firmware Download Public CAN
- · MOBILE Commissioning: Dataset Upload Public CAN
- MOBILE Diagnostics: Device Identification Public CAN
- MOBILE Diagnostics: Event Memory Public CAN



Die Installationspakete und die Dokumentation der MOBILE Panels finden Sie im Internet unter <u>www.bucherdrives.com</u> → Downloads → Software Downloads.

Registrieren Sie sich zunächst über "Anforderung User-Zugang für Panels". Anschließend erhalten Sie einen Link für den Zugang.

<u>س</u> ق

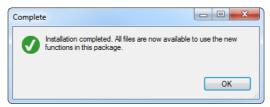


[3-5] Struktur der MOBILE Panels im »MOBILE Engineer«

3.9 MOBILE Panels

\_\_\_\_\_

#### 3.9.1 Inbetriebnahme-Panels installieren




### So Installieren Sie die MOBILE Panels:

- 1. Das Installationspaket "PanelItemMOBILE\_Commissioning\_x.x.x.exe" herunterladen.
- 2. »MOBILE Engineer« bzw. »MOBILE Starter« schließen.
- 3. Die Datei "PanelltemMOBILE Commissioning x.x.x.exe" ausführen.
- 4. Prüfen, dass die Versionen des »MOBILE Engineer« bzw. »MOBILE Starter« und der MOBILE Panels korrekt sind:



5. MOBILE Panels installieren. Nach erfolgreicher Installation wird folgendes Dialogfeld angezeigt:



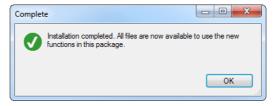
Die MOBILE Panels sind jetzt im »MOBILE Engineer« bzw. »MOBILE Starter« verfügbar. Die Anwenderdokumentation im Menü **Help** wurde aktualisiert und enthält jetzt auch die Beschreibung der MOBILE Panels.

33

3.9 MOBILE Panels

\_\_\_\_\_

### 3.9.2 Diagnose-Panels installieren




### So Installieren Sie die MOBILE Panels:

- 1. Das Installationspaket "PanelItemMOBILE\_Diagnostics\_x.x.x.exe" herunterladen.
- 2. »MOBILE Engineer« bzw. »MOBILE Starter« schließen.
- 3. Die Datei "PanelltemMOBILE Diagnostics x.x.x.exe" ausführen.
- 4. Prüfen, dass die Versionen des »MOBILE Engineer« bzw. »MOBILE Starter« und der MOBILE Panels korrekt sind:



5. MOBILE Panels installieren. Nach erfolgreicher Installation wird folgendes Dialogfeld angezeigt:



Die MOBILE Panels sind jetzt im »MOBILE Engineer« bzw. »MOBILE Starter« verfügbar. Die Anwenderdokumentation im Menü **Help** wurde aktualisiert und enthält jetzt auch die Beschreibung der MOBILE Panels.

## 4 Inbetriebnahme

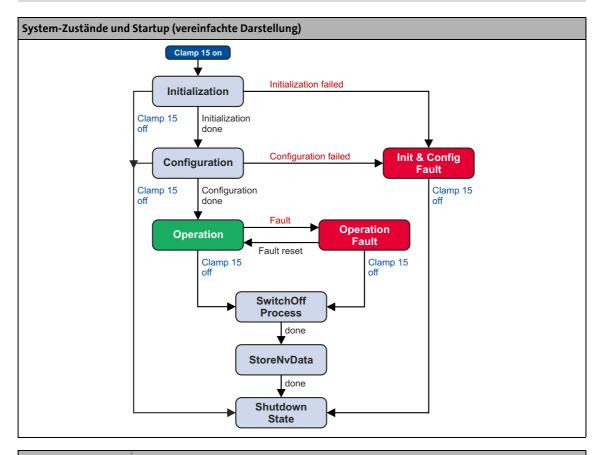
\_\_\_\_\_

### 4 Inbetriebnahme

Für eine Erstinbetriebnahme kann der Zugriff beispielsweise vom PC aus mit dem Engineering Tool »MOBILE Engineer« über den Private CAN erfolgen. Im laufenden Betrieb kommuniziert dann die Fahrzeugsteuerung über den Public CAN mit dem MOBILE. <u>Kundenschnittstellen</u> (17)

## 4 Inbetriebnahme

#### 4.1 Gerät einschalten


-----

### 4.1 Gerät einschalten



## Stop!

**Vor dem ersten Einschalten:** Bevor Sie den MOBILE erstmalig einschalten, überprüfen Sie die gesamte Verdrahtung auf Vollständigkeit, Kurzschluss und Erdschluss!



| Zustand             | Info                                                                                                                      |
|---------------------|---------------------------------------------------------------------------------------------------------------------------|
| Initialization      | Initialisierung des Systems (Identifikation, File-System)                                                                 |
| Configuration       | Konfiguration des Systems (Firmware-Check, Kommunikation, Parametrierung)                                                 |
| Operation           | Betriebszustand • In diesem Zustand kann der MOBILE für seine vorgesehenen Aufgaben betrieben werden.                     |
| SwitchOff Process   | Ausschalten der Inverter und der Gatetreiber                                                                              |
| StoreNvData         | Speicherung der Prozessdaten (Fehlerspeicher, etc.)                                                                       |
| Shutdown            | Shutdown des Systems                                                                                                      |
| Operation Fault     | Fehlerzustand im Betrieb • Reset je nach Fehlerart (Fault-Reset oder Shutdown über Klemme 15).                            |
| Init & Config Fault | Fehlerzustand während der Initialisierung oder Konfiguration des Systems • Reset nur per Shutdown über Klemme 15 möglich. |

| Event        | Info                                                   |
|--------------|--------------------------------------------------------|
| Fault reset  | "Klemme 15 intern" auf Low für 0.1 1.4 s (0x4010:0x03) |
| Clamp 15 off | "Klemme 15 intern" auf Low für ≥1.5 s (0x4010:0x03)    |

#### 4.1 Gerät einschalten

-----

#### 4.1.1 Gerätestatus

#### **MOBILE DCU, PSU, DCU PSU**

Über zwei LEDs am Gerät wird der aktuelle Gerätestatus angezeigt:

| LED1    | LED2 | Gerätestatus                     | Anmerkunger                                                                                                                        |                                             |
|---------|------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| 0       |      | Ausgeschaltet                    | _                                                                                                                                  |                                             |
| •       |      | Eingeschaltet - kein Fehler      | Es werden kei                                                                                                                      | ne <u>Public CAN</u> -Meldungen empfangen.  |
| (       |      | Eingeschaltet - kein Fehler      | Es werden <u>Pub</u>                                                                                                               | olic CAN-Meldungen empfangen.               |
| ((())   |      | Eingeschaltet - Bootloader aktiv | _                                                                                                                                  |                                             |
| •       |      | Eingeschaltet - Fehler           | Lesen Sie für eine detaillierte Diagnose den Fehlerspeicher oder Fehlercode (0x4003:1) aus.  ▶ Diagnose & Fehlermanagement (□ 212) |                                             |
| (((•))) |      | Eingeschaltet - Fehler           | CAN-Kommunikation ist unterbrochen. Diagnose über CAN ist nicht möglich.                                                           |                                             |
|         |      |                                  | 1× blinkend:                                                                                                                       | Invalid CAN address offset                  |
|         |      |                                  | 4× blinkend:                                                                                                                       | Initialization of the internal flash failed |
|         |      |                                  | 5× blinkend:                                                                                                                       | Bootloader/firmware incompatibility         |
|         | 0    | DC-Zwischenkreis geladen         | U <sub>DC</sub> > 50 V                                                                                                             |                                             |
|         | ()   | Vorladung aktiv                  | Blinkt langsam                                                                                                                     |                                             |
|         | (()) | Abdeckung nicht geschlossen      | Blinkt schnell (Voraussetzung: In <u>0x2730:0x05</u> ist die Überwachung auf geöffnete MOBILE-Abdeckung aktiviert)                 |                                             |

- O LED aus
- LED blinkend im 0.4-s-Takt
- (C)) LED blinkend im 0.2-s-Takt
- ((C))) LED Blinkmuster: blinkt einmal oder mehrmals mit einer Pause von 1 s
- Der Gerätestatus kann auch über den CAN-Bus gelesen werden.
- Mit dem Bucher »MOBILE Engineer« ist eine detaillierte Diagnose möglich.



# Hinweis!

### Fehleranzeige über Hardware-Signal

In der Voreinstellung erfolgt auch eine Fehleranzeige über die FLX\_OUT-Ausgänge:

- Fehler INV A/DCDC → Ausgang FLX OUT1 wird auf HIGH-Pegel gesetzt.
- Fehler INV B → Ausgang FLX\_OUT2 wird auf HIGH-Pegel gesetzt.
- ▶ FLX OUT1 ... FLX OUT4 (□ 56)

#### **MOBILE DCU S**

- Der Gerätestatus kann nur über den CAN-Bus gelesen werden.
- Mit dem Bucher »MOBILE Engineer« ist eine detaillierte Diagnose möglich.

#### 4.1 Gerät einschalten

------

#### 4.1.2 Klemme-15-Signal



## Hinweis!

- Das Hardware-Signal der Klemme 15 wird mit dem von der übergeordneten Steuerung über die Public CAN Receive message 0 empfangenen Systemstatus der Klemme 15 ("Clamp15 CAN") entsprechend nachfolgender Tabelle verknüpft.
- Das Hardware-Signal der Klemme 15 muss zwingend einmalig für ca. 1 s anstehen, damit die Steuerung (Application-Controller) "aufwacht".
- Sobald das resultierende Signal (Klemme 15 intern) für 1500 ms (Voreinstellung) oder länger wegfällt, leitet die Firmware einen Shutdown ein.
  - Shutdown-Verzögerungszeit für MOBILE DCU, PSU, DCU PSU: 0x4010:0x03
  - Shutdown-Verzögerungszeit für MOBILE DCU S: 0x4010:0x03

| Clamp15_CAN (Firmware-Signal) | Klemme 15 (Hardware-Signal) | Klemme 15 intern |
|-------------------------------|-----------------------------|------------------|
| 0                             | 0                           | 0                |
|                               | 1                           | 1                |
| 1                             | 0                           | 1                |
|                               | 1                           | 1                |
| Signal nicht vorhanden        | 0                           | 0                |
|                               | 1                           | 1                |

#### Fehler-Reset über "Klemme 15 intern"

Durch eine nur kurzzeitige Rücknahme des "Klemme 15 intern"-Signals lässt sich ein Inverter, der wegen eines Fehlers ausgeschaltet wurde, aus dem Fehlerzustand in den Betriebszustand zurücksetzen. Inverter ohne Fehler werden ohne Unterbrechung weiter betrieben.

Um einen Fehler-Reset zu erzwingen, muss das "Klemme 15 intern"-Signal für eine bestimmte Zeitdauer auf Low-Pegel gesetzt werden (abhängig von der Shutdown-Verzögerungszeit in 0x4010:0x03, Voreinstellung: 0.1 ... 1.4 s). Fällt das Signal länger weg, leitet die Firmware einen Shutdown ein.

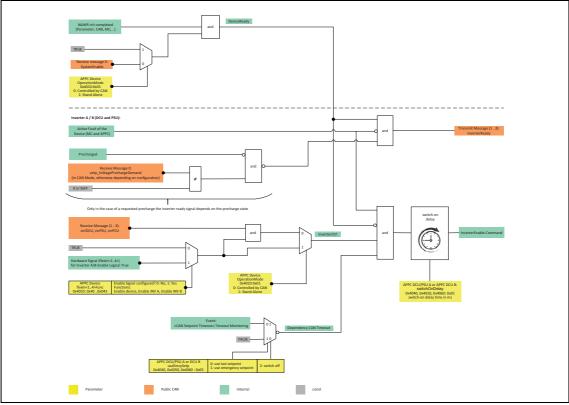
▶ Gerät einschalten (☐ 36)

Ein Fehler-Reset ist auch über den Service "FaultReset" möglich.

▶ Übersicht "Services & Dienste" (□ 184)

#### **Verwandte Themen:**

▶ <u>Status der übergeordneten Steuerung</u> (☐ 174)


#### Gerät einschalten 4.1

#### 4.1.3 **Inverter Ready Zustand und Einschaltbedingungen**

Um den jeweiligen Ausgang (DCU und PSU) einschalten zu können, müssen folgende, im Signalfluss dargestellte Bedingungen, erfüllt sein:

• Systemfreigabe: DeviceReady • Inverterfreigabe: InverterCtrl

- · Abgelaufene Einschaltverzögerung
- Kein aktiver Fehler



Inverter Ready Zustand und Einschaltbedingungen [4-1]



Die im Diagramm dargestellten Public CAN Signale sind in folgenden Kapiteln detailliert beschrieben:

- ▶ Public CAN receive messages (□ 173)
- ▶ Public CAN transmit messages (☐ 178)

#### 4.1 Gerät einschalten

-----

#### 4.1.4 Systemfreigabe

Für die Betriebsbereitschaft des MOBILE müssen folgende Bedingungen erfüllt sein:

- 1. Klemme-15-Signal vorhanden.
- 2. Das Gerät muss komplett hochgefahren sein. Dies beinhaltet die Initialisierung und Parametrierung des Application-Controllers (APPC) und des Motor-Controllers (MC) sowie die CAN-Kommunikation.
- 3. Bei Steuerung über <u>Public CAN</u> (Voreinstellung; konfigurierbar in <u>0x4010:0x01</u>): Von der übergeordneten Steuerung muss das Freigabe-Signal empfangen worden sein.
  - Public CAN Receive message 0 → <u>SystemEnable</u> = 1

## 4.1.5 Reglerfreigabe

Damit der Inverter eingeschaltet werden kann, muss die Reglerfreigabe vorhanden sein. Diese Freigabe wird für jeden Inverter separat überwacht.

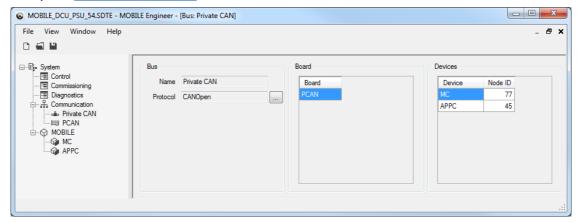
Für die Reglerfreigabe müssen folgende Bedingungen erfüllt sein:

- 1. Klemme-15-Signal vorhanden.
- 2. Systemfreigabe vorhanden.
- 3. Bei Steuerung über <u>Public CAN</u> (Voreinstellung; konfigurierbar in <u>0x4010:0x01</u>): Von der übergeordneten Steuerung muss das Einschalt-Signal empfangen worden sein.
  - Inverter A: Public CAN Receive message 1 → ctrlDCU = 1
  - Inverter B: Public CAN Receive message 2 → ctrlDCU = 1
  - Bordnetzwandler: Public CAN Receive message 3 → ctrlPSU = 1
- 4. Freigabe-Signal über FLX INx vorhanden (sofern konfiguriert).
  - ► <u>FLX\_IN1</u> ... <u>FLX\_IN4</u> (□ 49)
- 5. Einschaltverzögerung für 1. und 2. abgelaufen (sofern konfiguriert).

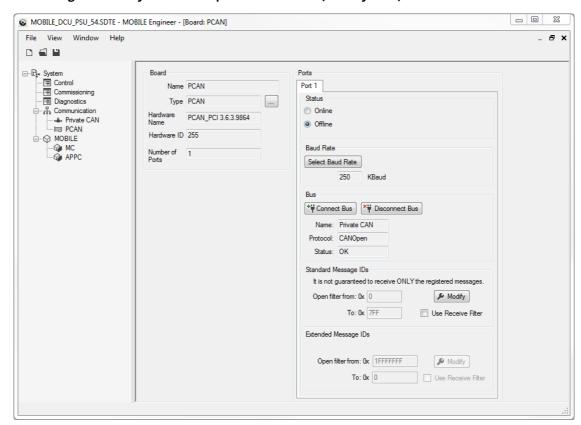
#### Einschaltverzögerung

Durch Einstellung einer Einschaltverzögerung lassen sich Verbraucher gestaffelt einschalten. Die Einschaltverzögerung wird gestartet, sobald alle Freigabebedingungen anstehen. Beim Wegfall einer Bedingung wird der Timer zurückgesetzt. In der Voreinstellung ist keine Einschaltverzögerung eingestellt.

| Einschaltverzögerung für | Konfiguration      | Einstellmöglichkeiten |
|--------------------------|--------------------|-----------------------|
| Inverter A               | <u>0x4040:0x01</u> | 0 65535 [ms]          |
| Inverter B               | <u>0x4050:0x01</u> |                       |
| Bordnetzwandler          | 0x4060:0x01        |                       |


4.2 Kommunikation mit »MOBILE Engineer« über Private CAN aufbauen

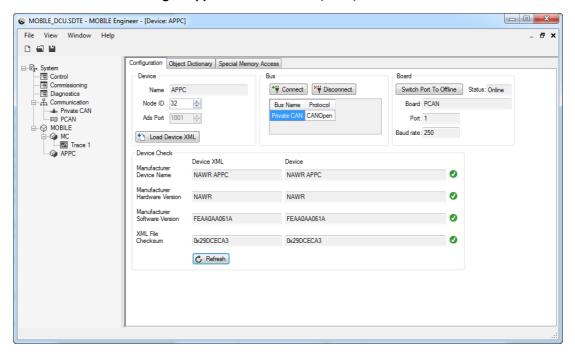
\_\_\_\_\_


## 4.2 Kommunikation mit »MOBILE Engineer« über Private CAN aufbauen

### Einstellungen Protokoll und CAN-Adressen:

Für eine Kommunikation über Private CAN sind im »MOBILE Engineer« die CAN-Adressen des zu parametrierenden MOBILE einzustellen. Allgemeine Informationen zur CAN-Adressvergabe finden Sie im Kapitel "Geräte-Identifikation". (🛘 18)



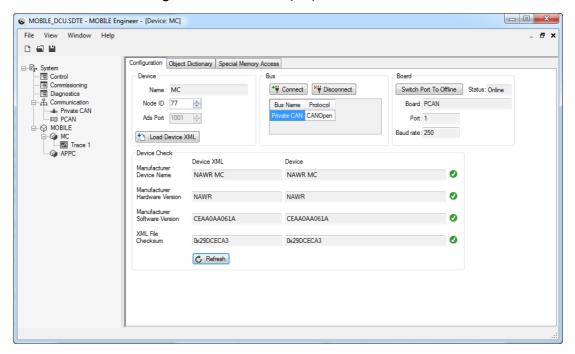

#### Einstellungen für PC-Systembusadapter IPEH-002022 (Peak System):



4.2 Kommunikation mit »MOBILE Engineer« über Private CAN aufbauen

.\_\_\_\_\_

## Kommunikationseinstellungen Application-Controller (APPC):




| Schaltfläche                         | Funktion                                                                                                                                                                                                                                                                                   |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Load Device XML                      | Gerätebeschreibungsdatei (*.xml) für den Application-Controller laden • Zu jedem MOBILE-Firmware-Release werden die passenden Gerätebeschreibungsdateien mit ausgegeben.                                                                                                                   |  |
| Bus: Connect/Disconnect              | Verbindung mit dem Feldbus herstellen/beenden                                                                                                                                                                                                                                              |  |
| Board: Switch Port To Offline/Online | PC-Systembusadapter offline/online schalten                                                                                                                                                                                                                                                |  |
| Device Check: Refresh                | Bei bestehender Online-Verbindung: Identifikationsdaten vom Gerät laden und mit den Identifikationsdaten der geladenen Gerätebeschreibungsdatei (*.xml) vergleichen                                                                                                                        |  |
|                                      | Diese Anzeige signalisiert, dass die Identifikationsdaten des Gerätes mit den Identifikationsdaten der geladenen Gerätebeschreibungsdatei (*.xml) übereinstimmen.                                                                                                                          |  |
|                                      | Diese Anzeige signalisiert, dass die Identifikationsdaten des Gerätes von den Identifikationsdaten der geladenen Gerätebeschreibungsdatei (*.xml) abweichen.  Laden Sie in diesem Fall die passende Gerätebeschreibungsdatei (*.xml) oder führen Sie ein Firmware-Update beim Gerät durch. |  |

## 4.2 Kommunikation mit »MOBILE Engineer« über Private CAN aufbauen

.\_\_\_\_\_

## Kommunikationseinstellungen Motor-Controller (MC):



| Schaltfläche                         | Funktion                                                                                                                                                                                                                                                                                   |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Load Device XML                      | Gerätebeschreibungsdatei (*.xml) für den Motor-Controller laden • Zu jedem MOBILE-Firmware-Release werden die passenden Gerätebeschreibungsdateien mit ausgegeben.                                                                                                                         |  |
| Bus: Connect/Disconnect              | Verbindung mit dem Feldbus herstellen/beenden                                                                                                                                                                                                                                              |  |
| Board: Switch Port To Offline/Online | PC-Systembusadapter offline/online schalten                                                                                                                                                                                                                                                |  |
| Device Check: Refresh                | Bei bestehender Online-Verbindung: Identifikationsdaten vom Gerät laden und mit den Identifikationsdaten der geladenen Gerätebeschreibungsdatei (*.xml) vergleichen                                                                                                                        |  |
|                                      | Diese Anzeige signalisiert, dass die Identifikationsdaten des Gerätes mit den Identifikationsdaten der geladenen Gerätebeschreibungsdatei (*.xml) übereinstimmen.                                                                                                                          |  |
|                                      | Diese Anzeige signalisiert, dass die Identifikationsdaten des Gerätes von den Identifikationsdaten der geladenen Gerätebeschreibungsdatei (*.xml) abweichen.  Laden Sie in diesem Fall die passende Gerätebeschreibungsdatei (*.xml) oder führen Sie ein Firmware-Update beim Gerät durch. |  |

\_\_\_\_\_

# 5 Application-Controller (APPC)

Dieses Kapitel beschreibt die Parametrierung des Application-Controllers (APPC).

Der Funktionsumfang ist je nach MOBILE-Gerät unterschiedlich. Die Tabelle zeigt die in diesem Kapitel beschriebenen Objekte und die entsprechenden Funktionen der MOBILE-Geräte.

| Objekt        | Beschreibung                             |                    |     | MC  | BILE    |       |
|---------------|------------------------------------------|--------------------|-----|-----|---------|-------|
|               |                                          |                    | DCU | PSU | DCU PSU | DCU S |
| <u>0x4010</u> | Grundeinstellungen                       |                    | •   | •   | •       | •     |
|               |                                          | FLX_IN1 FLX_IN4    | •   | •   | •       | •     |
|               |                                          | FLX_OUT1 FLX_OUT4  | •   | •   | •       |       |
| <u>0x4020</u> | Einstellungen Public CAN                 |                    | •   | •   | •       | •     |
| 0x4021        |                                          | Tx ID              | •   | •   | •       | •     |
| 0x4022        |                                          | Tx Cycletime       | •   | •   | •       | •     |
| <u>0x4023</u> |                                          | Rx ID              | •   | •   | •       | •     |
| 0x4024        |                                          | Rx Timeout         | •   | •   | •       | •     |
| 0x4025        |                                          | Mapping            | •   | •   | •       | •     |
| 0x4030        | Einstellungen Private<br>CAN             |                    | •   | •   | •       | •     |
| 0x4040        | Einstellungen Drive                      | Inverter INV A     | •   |     |         | •     |
| 0x4050        | Control Unit (DCU)                       | Inverter INV B     | •   |     | •       |       |
| 0x4060        | Einstellungen Power<br>Supply Unit (PSU) | DC/DC-Wandler DCDC |     | •   | •       |       |

# Application-Controller (APPC) Grundeinstellungen 5

# 5.1

#### 5.1 Grundeinstellungen

## 0x4010 - APPC Device

| Sub.          | Name                       | Voreinstellung | Datentyp   |
|---------------|----------------------------|----------------|------------|
| ▶ <u>0x01</u> | operationMode              | 0              | UNSIGNED8  |
| ▶ <u>0x02</u> | defaultDcLinkVoltage       | 0 V            | INT16      |
| ▶ <u>0x03</u> | shutdownDelay              | 1500 ms        | UNSIGNED16 |
| ▶ <u>0x04</u> | velocityScalingEnumeration | 1              | INT8       |
| ▶ <u>0x05</u> | voltagePrechargeDemand     | 0 V            | INT16      |
| ▶ <u>0x10</u> | wakeSourceConfig           | 2              | UNSIGNED16 |
| ▶ <u>0x20</u> | noMcUpdate                 | 0              | UNSIGNED8  |
| ▶ <u>0x40</u> | flexIn1Func                | 0              | UNSIGNED16 |
| ▶ <u>0x41</u> | flexIn2Func                | 0              | UNSIGNED16 |
| ▶ <u>0x42</u> | flexIn3Func                | 1001           | UNSIGNED16 |
| ▶ <u>0x43</u> | flexIn4Func                | 2001           | UNSIGNED16 |
| ▶ <u>0x44</u> | flexIn1FuncSwitchOnDelay   | 0 ms           | INT16      |
| ▶ <u>0x45</u> | flexIn2FuncSwitchOnDelay   | 0 ms           | INT16      |
| ▶ <u>0x46</u> | flexIn3FuncSwitchOnDelay   | 0 ms           | INT16      |
| ▶ <u>0x47</u> | flexIn4FuncSwitchOnDelay   | 0 ms           | INT16      |
| ▶ <u>0x48</u> | flexIn1FuncSwitchOffDelay  | 0 ms           | INT16      |
| ▶ <u>0x49</u> | flexIn2FuncSwitchOffDelay  | 0 ms           | INT16      |
| ▶ <u>0x4A</u> | flexIn3FuncSwitchOffDelay  | 0 ms           | INT16      |
| ▶ <u>0x4B</u> | flexIn4FuncSwitchOffDelay  | 0 ms           | INT16      |
| ▶ <u>0x50</u> | flexOut1Func               | 1005           | UNSIGNED16 |
| ▶ <u>0x51</u> | flexOut2Func               | 2005           | UNSIGNED16 |
| ▶ <u>0x52</u> | flexOut3Func               | 1001           | UNSIGNED16 |
| ▶ <u>0x53</u> | flexOut4Func               | 2001           | UNSIGNED16 |

| Subindex 0x01: operationMode                                               |     |   |           |  |
|----------------------------------------------------------------------------|-----|---|-----------|--|
| 0 = Steuerung über CAN<br>1 = Stand-Alone-Betrieb (Bedienung über Klemmen) |     |   |           |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                  |     |   |           |  |
| 1                                                                          | 0 1 | 0 | UNSIGNED8 |  |

| Subindex 0x02: defaultDcLinkVoltage                                                                                                                                                                       |                   |     |       |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----|-------|--|
| Dieser Wert wird verwendet, wenn über <u>Public CAN</u> der Sollwert setp_DcLinkVoltage nicht verfügbar ist. Wird die DC-Zwischenkreis-Funktionalität nicht benötigt, ist hier der Wert 0 V einzustellen. |                   |     |       |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                                                                                                                                 |                   |     |       |  |
| 6.25000000000E-002                                                                                                                                                                                        | -2048 2047.9375 V | 0 V | INT16 |  |

| Subindex 0x03: shutdownDelay                                                                                                                                                                                                                                                                                         |            |         |            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|------------|--|
| Das Hardware-Signal der Klemme 15 wird mit dem von der übergeordneten Steuerung empfangenen Systemstatus der Klemme 15 ("Clamp15_CAN") verknüpft (siehe <u>Klemme-15-Signal</u> ). Sobald das resultierende Signal für die hier eingestellte Zeitdauer oder länger wegfällt, leitet die Software einen Shutdown ein. |            |         |            |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                                                                                                                                                                                                                                            |            |         |            |  |
| 1                                                                                                                                                                                                                                                                                                                    | 0 65535 ms | 1500 ms | UNSIGNED16 |  |

# Grundeinstellungen

| Subindex 0x04: velocityScal                                         | Subindex 0x04: velocityScalingEnumeration |                |          |  |
|---------------------------------------------------------------------|-------------------------------------------|----------------|----------|--|
| -1 = 0.5 rpm/Bit<br>1 = 1 rpm/Bit<br>2 = 2 rpm/Bit<br>3 = 4 rpm/Bit |                                           |                |          |  |
| Skalierungsfaktor                                                   | Einstellbereich                           | Voreinstellung | Datentyp |  |
| 1                                                                   | -1 4                                      | 1              | INT8     |  |

| Subindex 0x05: voltagePrechargeDemand                     |                                              |     |       |  |
|-----------------------------------------------------------|----------------------------------------------|-----|-------|--|
| Die Funktion ist ab Firmwa                                | Die Funktion ist ab Firmware R6.3 verfügbar. |     |       |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp |                                              |     |       |  |
| 6.25000000000E-002                                        | 0 850 V                                      | 0 V | INT16 |  |

### Subindex 0x10: wakeSourceConfig

Konfiguration der Quelle für Wake up: 1 = Wake up über CAN

- 2 = Wake up über Klemme 15
- 3 = Wake up über CAN oder Klemme 15

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 13              | 2              | UNSIGNED16 |

#### Subindex 0x20: noMcUpdate

MC-Firmware-Update:

- 0 = freigegeben
- 1 = gesperrt

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 0 1             | 0              | UNSIGNED8 |

| Subindex 0x40: flexin1Func  Funktionsbelegung des Eingangs FLX_IN1 (X31/17)  • Einstellmöglichkeiten siehe FLX_IN1 FLX_IN4. |         |   |            |
|-----------------------------------------------------------------------------------------------------------------------------|---------|---|------------|
|                                                                                                                             |         |   |            |
| 1                                                                                                                           | 0 65535 | 0 | UNSIGNED16 |

| Subindex 0x41: flexIn2Func                                |                                                                                                 |   |            |  |  |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------|---|------------|--|--|
|                                                           | Funktionsbelegung des Eingangs FLX_IN2 (X31/16)  • Einstellmöglichkeiten siehe FLX_IN1 FLX_IN4. |   |            |  |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp |                                                                                                 |   |            |  |  |
| 1                                                         | 0 65535                                                                                         | 0 | UNSIGNED16 |  |  |

| Subindex 0x42: flexIn3Func  Funktionsbelegung des Eingangs FLX_IN3 (X31/15)  • Einstellmöglichkeiten siehe FLX_IN1 FLX_IN4. |         |      |            |
|-----------------------------------------------------------------------------------------------------------------------------|---------|------|------------|
|                                                                                                                             |         |      |            |
| 1                                                                                                                           | 0 65535 | 1001 | UNSIGNED16 |

## 5.1 Grundeinstellungen

.\_\_\_\_\_

| Subindex 0x43: flexIn4Func |                                                                                                |                |            |  |
|----------------------------|------------------------------------------------------------------------------------------------|----------------|------------|--|
|                            | Funktionsbelegung des Eingangs FLX_IN4 (X31/14) • Einstellmöglichkeiten siehe FLX_IN1 FLX_IN4. |                |            |  |
| Skalierungsfaktor          | Einstellbereich                                                                                | Voreinstellung | Datentyp   |  |
| 1                          | 0 65535                                                                                        | 2001           | UNSIGNED16 |  |

#### Subindex 0x44: flexIn1FuncSwitchOnDelay

- Durch Einstellung einer positiven Verzögerungszeit lässt sich der Einschaltbefehl über einen FLX\_IN-Eingang verzögern. Diese Funktionalität kann zusammen mit allen Enable-Funktionen verwendet werden. Siehe "Verzögertes Einschalten über einen FLX\_IN".
- Durch Einstellung einer negativen Verzögerungszeit lässt sich die Fehlerauslösung der Überwachung eines
  FLX\_IN-Eingangs verzögern. Diese Funktionalität kann nur für die FLX\_IN-Funktion "Bei Störung Reaktion" verwendet werden, ansonsten hat diese Konfiguration keine Auswirkung. Siehe "Verzögerte Überwachung über einen FLX\_IN".

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp |
|-------------------|-----------------|----------------|----------|
| 1                 | -32768 32767 ms | 0 ms           | INT16    |

| Subindex 0x45: flexIn2FuncSwitchOnDelay |                 |                |          |
|-----------------------------------------|-----------------|----------------|----------|
| Siehe Beschreibung zu Subindex 0x44     |                 |                |          |
| Skalierungsfaktor                       | Einstellbereich | Voreinstellung | Datentyp |
| 1                                       | -32768 32767 ms | 0 ms           | INT16    |

| Subindex 0x46: flexIn3FuncSwitchOnDelay |                 |                |          |
|-----------------------------------------|-----------------|----------------|----------|
| Siehe Beschreibung zu Subindex 0x44     |                 |                |          |
| Skalierungsfaktor                       | Einstellbereich | Voreinstellung | Datentyp |
| 1                                       | -32768 32767 ms | 0 ms           | INT16    |

| Subindex 0x47: flexIn4Func          | SwitchOnDelay   |                |          |
|-------------------------------------|-----------------|----------------|----------|
| Siehe Beschreibung zu Subindex 0x44 |                 |                |          |
| Skalierungsfaktor                   | Einstellbereich | Voreinstellung | Datentyp |
| 1                                   | -32768 32767 ms | 0 ms           | INT16    |

| Subindex 0x48: flexIn1FuncSwitchOffDelay                                                                                                                                                                             |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Durch Einstellung einer Verzögerungszeit lässt sich der Ausschaltbefehl über einen FLX_IN-Eingang verzögern.Siehe "Verzögertes Ausschalten über einen FLX_IN".SkalierungsfaktorEinstellbereichVoreinstellungDatentyp |  |  |  |  |
|                                                                                                                                                                                                                      |  |  |  |  |

| Subindex 0x49: flexIn2FuncSwitchOffDelay |                                                                                                                                                                 |                |          |  |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|--|--|
|                                          | Durch Einstellung einer Verzögerungszeit lässt sich der Ausschaltbefehl über einen FLX_IN-Eingang verzögern. Siehe "Verzögertes Ausschalten über einen FLX_IN". |                |          |  |  |
| Skalierungsfaktor                        | Einstellbereich                                                                                                                                                 | Voreinstellung | Datentyp |  |  |
| 1                                        | -32768 32767 ms                                                                                                                                                 | 0 ms           | INT16    |  |  |

| Subindex 0x4A: flexIn3FuncSwitchOffDelay                                                                                                                                 |                 |                |          |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Durch Einstellung einer Verzögerungszeit lässt sich der Ausschaltbefehl über einen FLX_IN-Eingang verzögern. Siehe " <u>Verzögertes Ausschalten über einen FLX_IN</u> ". |                 |                |          |  |
| Skalierungsfaktor Einstellbereich                                                                                                                                        |                 | Voreinstellung | Datentyp |  |
| 1                                                                                                                                                                        | -32768 32767 ms | 0 ms           | INT16    |  |

### Grundeinstellungen

#### Subindex 0x4B: flexIn4FuncSwitchOffDelay

Durch Einstellung einer Verzögerungszeit lässt sich der Ausschaltbefehl über einen FLX\_IN-Eingang verzögern. Siehe "Verzögertes Ausschalten über einen FLX IN".

| Skalierungsfaktor |   | Einstellbereich | Voreinstellung | Datentyp |  |
|-------------------|---|-----------------|----------------|----------|--|
|                   | 1 | -32768 32767 ms | 0 ms           | INT16    |  |

#### Subindex 0x50: flexOut1Func

Funktionsbelegung des Ausgangs FLX\_OUT1 (X31/26):

• Einstellmöglichkeiten siehe FLX OUT1 ... FLX OUT4.

| Skalierungsfaktor Einstellbereich |         | Voreinstellung | Datentyp   |
|-----------------------------------|---------|----------------|------------|
| 1                                 | 0 65535 | 1005           | UNSIGNED16 |

#### Subindex 0x51: flexOut2Func

Funktionsbelegung des Ausgangs FLX\_OUT2 (X31/25)

• Einstellmöglichkeiten siehe FLX OUT1 ... FLX OUT4.

| Skalierungsfaktor Einstellbereich |         | Voreinstellung | Datentyp   |
|-----------------------------------|---------|----------------|------------|
| 1                                 | 0 65535 | 2005           | UNSIGNED16 |

#### Subindex 0x52: flexOut3Func

Funktionsbelegung des Ausgangs FLX\_OUT3 (X31/24)

• Einstellmöglichkeiten siehe FLX OUT1 ... FLX OUT4.

| Skalierungsfaktor |   | Einstellbereich | Voreinstellung | Datentyp   |  |
|-------------------|---|-----------------|----------------|------------|--|
|                   | 1 | 0 65535         | 1001           | UNSIGNED16 |  |

#### Subindex 0x53: flexOut4Func

Funktionsbelegung des Ausgangs FLX\_OUT4 (X31/23)
• Einstellmöglichkeiten siehe FLX\_OUT1 FLX\_OUT4

| • Einsteilmöglichkeiten siehe <u>FLX_0011 FLX_0014</u> . |                 |                |            |  |  |  |
|----------------------------------------------------------|-----------------|----------------|------------|--|--|--|
| Skalierungsfaktor                                        | Einstellbereich | Voreinstellung | Datentyp   |  |  |  |
| 1                                                        | 0 65535         |                | UNSIGNED16 |  |  |  |

### 5.1 Grundeinstellungen

-----

## 5.1.1 FLX\_IN1 ... FLX\_IN4

Für jeden der vier Eingänge gibt es einen Parameter, mit dem die Funktion des Eingangs konfiguriert werden kann:

| Eingang | Parameter   |      | Voreins<br>MO | · ·     |       |
|---------|-------------|------|---------------|---------|-------|
|         |             | DCU  | PSU           | DCU PSU | DCU s |
| FLX_IN1 | 0x4010:0x40 | 0    | 0             | 0       | 0     |
| FLX_IN2 | 0x4010:0x41 | 0    | 0             | 0       | 0     |
| FLX_IN3 | 0x4010:0x42 | 1001 | 0             | 0       | 1001  |
| FLX_IN4 | 0x4010:0x43 | 2001 | 0             | 2001    | 0     |

0: keine Funktion

1001: Auto-Freigabe INV A/DCDC (High-Pegel)2001: Auto-Freigabe INV B/DCDC (High-Pegel)



# Hinweis!

Sind mehrere Eingänge mit der gleichen Funktion oder mit Funktionen belegt, die sich einander gegenseitig beeinflussen, ist die Priorität durch die Reihenfolge der Abarbeitung der Eingänge festgelegt.

FLX\_IN1: niedrigste PrioritätFLX\_IN4: höchste Priorität

# 5.1 Grundeinstellungen

\_\_\_\_\_\_

# 5.1.1.1 Einstellmöglichkeiten

- Nicht aufgeführte Werte haben keine Funktion.
- Pull-up aktiv/Pull-down aktiv: Die Eingänge verfügen über interne, aktivierbare Pull-up- und Pull-down-Widerstände. Diese werden je nach gewählter Funktion automatisch aktiviert.

| Wert      | Funktion                                           | Pegel | Pull-up<br>aktiv | Pull-down<br>aktiv | Anmerkungen                                                                                                              |
|-----------|----------------------------------------------------|-------|------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------|
| 0         | keine Funktion                                     |       |                  |                    |                                                                                                                          |
| Steuersig | gnale für Gerät                                    |       | •                |                    |                                                                                                                          |
| 1         | Auto-Freigabe Gerät                                | High  | •                |                    | Ohne externe Verdrahtung aktiv<br>Stopp ist möglich durch Signal                                                         |
| 2         | Freigabe Gerät                                     | High  |                  | •                  | Ohne externe Verdrahtung inaktiv                                                                                         |
| 3         |                                                    | Low   | •                |                    |                                                                                                                          |
| 4         | Bei Störung Reaktion                               | High  | •                |                    | Ohne externe Verdrahtung aktiv                                                                                           |
| 5         | "Schnellhalt" INV A/INV B                          | Low   |                  | •                  |                                                                                                                          |
| 6         | Bei Störung Reaktion "Aus-<br>trudeln" INV A/INV B | High  | •                |                    | Ohne externe Verdrahtung aktiv                                                                                           |
| 7         | Trudeiii iivv Ayiivv B                             | Low   |                  | •                  |                                                                                                                          |
| 8         | Freigabe Vorladung Zwi-<br>schenkreis              | High  |                  | •                  | (Diese Funktion ist ab Firmware R6.4 verfügbar.)                                                                         |
| 9         | SCHERKIEIS                                         | Low   | •                |                    | Damit die Vorladung aktiv ist, müssen alle konfigurierten FlexIn[x]Func aktiviert sein.  ▶ Vorladung über FLX_INx (□ 90) |
| 10        | Wiederherstellung                                  | High  |                  | •                  |                                                                                                                          |
| 11        | Parametersatz 1<br>INV A/INV B                     | Low   |                  | •                  |                                                                                                                          |
| 12        | Wiederherstellung                                  | High  |                  | •                  |                                                                                                                          |
| 13        | Parametersatz 2<br>INV A/INV B                     | Low   |                  | •                  |                                                                                                                          |
| 14        | Wiederherstellung                                  | High  |                  | •                  |                                                                                                                          |
| 15        | Parametersatz 3<br>INV A/INV B                     | Low   |                  | •                  |                                                                                                                          |
| 16        | Wiederherstellung                                  | High  |                  | •                  |                                                                                                                          |
| 17        | Parametersatz 4<br>INV A/INV B                     | Low   |                  | •                  |                                                                                                                          |
| 18        | Wiederherstellung                                  | High  |                  | •                  |                                                                                                                          |
| 19        | Parametersatz 5<br>INV A/INV B                     | Low   |                  | •                  |                                                                                                                          |
| 20        |                                                    | High  |                  | •                  |                                                                                                                          |
| 21        | Parametersatz 6<br>INV A/INV B                     | Low   |                  | •                  |                                                                                                                          |
| 22        | l G                                                | High  |                  | •                  |                                                                                                                          |
| 23        | Parametersatz 7<br>INV A/INV B                     | Low   |                  | •                  |                                                                                                                          |
| 24        | ı                                                  | High  |                  | •                  |                                                                                                                          |
| 25        | Parametersatz 8<br>INV A/INV B                     | Low   |                  | •                  |                                                                                                                          |
| 26        |                                                    | High  |                  | •                  |                                                                                                                          |
| 27        | Parametersatz 9<br>INV A/INV B                     | Low   |                  | •                  |                                                                                                                          |
| 28        |                                                    | High  |                  | •                  |                                                                                                                          |
| 29        | Parametersatz 10<br>INV A/INV B                    | Low   |                  | •                  |                                                                                                                          |
| 30        |                                                    | High  |                  | •                  |                                                                                                                          |
| 31        | Parametersatz 11<br>INV A/INV B                    | Low   |                  | •                  |                                                                                                                          |

# Application-Controller (APPC) Grundeinstellungen 5

# 5.1

| Wert      | Funktion                        | Pegel | Pull-up<br>aktiv | Pull-down<br>aktiv | Anmerkungen                                                                                                                                                                      |
|-----------|---------------------------------|-------|------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32        | Wiederherstellung               | High  |                  | •                  |                                                                                                                                                                                  |
| 33        | Parametersatz 12<br>INV A/INV B | Low   |                  | •                  |                                                                                                                                                                                  |
| 34        |                                 | High  |                  | •                  |                                                                                                                                                                                  |
| 35        | Parametersatz 13<br>INV A/INV B | Low   |                  | •                  |                                                                                                                                                                                  |
| 36        |                                 | High  |                  | •                  |                                                                                                                                                                                  |
| 37        | Parametersatz 14<br>INV A/INV B | Low   |                  | •                  |                                                                                                                                                                                  |
| 40        | , 0                             | High  |                  | •                  | (Diese Funktion ist ab Firmware R6.4 verfüg-                                                                                                                                     |
| 41        | schenkreis                      | Low   | •                |                    | bar.) Die Entladung ist deaktiviert, wenn kein Fle- xIn[x]Func mit dieser Funktion konfiguriert ist und OperationMode = 1 ist (Stand-Alone-Be- trieb).  Discharge-Funktion ( 93) |
| Steuersig | gnale für INV A/DCDC            |       |                  |                    |                                                                                                                                                                                  |
| 1001      | Auto-Freigabe<br>INV A/DCDC     | High  | •                |                    | Ohne externe Verdrahtung aktiv<br>Stopp ist möglich durch Signal                                                                                                                 |
| 1002      | Freigabe                        | High  |                  | •                  | Ohne externe Verdrahtung inaktiv                                                                                                                                                 |
| 1003      | INV A/DCDC                      | Low   | •                |                    | _                                                                                                                                                                                |
| 1004      | Auswahl Festsollwerte           | High  |                  | •                  | Ohne externe Verdrahtung inaktiv                                                                                                                                                 |
| 1005      | INV A                           | Low   | •                |                    | ► <u>Auswahl Festsollwerte</u> (☐ 52)                                                                                                                                            |
| 1006      |                                 | High  | •                |                    | Ohne externe Verdrahtung aktiv                                                                                                                                                   |
| 1007      | "Schnellhalt" INV A             | Low   |                  | •                  |                                                                                                                                                                                  |
| 1008      |                                 | High  | •                |                    | Ohne externe Verdrahtung aktiv                                                                                                                                                   |
| 1009      | trudeln" INV A                  | Low   |                  | •                  |                                                                                                                                                                                  |
| Steuersi  | gnale für INV B                 |       | ·                |                    |                                                                                                                                                                                  |
| 2001      | Auto-Freigabe INV B             | High  | •                |                    | Ohne externe Verdrahtung aktiv<br>Stopp ist möglich durch Signal                                                                                                                 |
| 2002      | Freigabe INV B                  | High  |                  | •                  | Ohne externe Verdrahtung inaktiv                                                                                                                                                 |
| 2003      |                                 | Low   | •                |                    |                                                                                                                                                                                  |
| 2004      |                                 | High  |                  | •                  | Ohne externe Verdrahtung inaktiv                                                                                                                                                 |
| 2005      | INV B                           | Low   | •                |                    | ► <u>Auswahl Festsollwerte</u> (☐ 52)                                                                                                                                            |
| 2006      |                                 | High  | •                |                    | Ohne externe Verdrahtung aktiv                                                                                                                                                   |
| 2007      | "Schnellhalt" INV B             | Low   |                  | •                  |                                                                                                                                                                                  |
| 2008      | Bei Störung Reaktion "Aus-      | High  | •                |                    | Ohne externe Verdrahtung aktiv                                                                                                                                                   |
| 2009      | trudeln" INV B                  | Low   |                  | •                  |                                                                                                                                                                                  |

# 5.1 Grundeinstellungen

\_\_\_\_\_\_

#### 5.1.1.2 Auswahl Festsollwerte

Im Stand-Alone-Betrieb (0x4010:0x01) können Sie mittels der Eingänge FLX\_IN1 ... FLX\_IN4 bis zu 16 vordefinierte Drehzahlen oder Drehmomente auswählen.

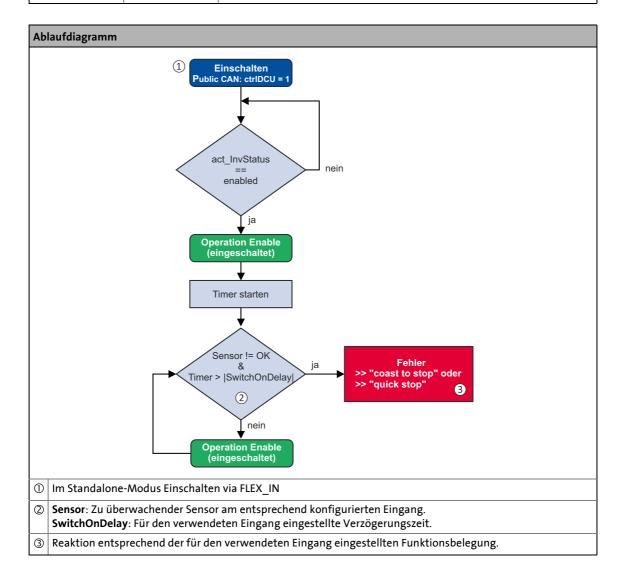
Abhängig vom gewählten Betriebsmodus stehen entweder die Drehzahlsollwerte oder die Drehmomentsollwerte zur Verfügung:

| Betriebsmodus                |                          |     | МО  | BILE    |       |
|------------------------------|--------------------------|-----|-----|---------|-------|
|                              |                          | DCU | PSU | DCU PSU | DCU s |
| Velocity Mode<br>Torque Mode | INV A: ( <u>0x6060</u> ) | •   |     |         | •     |
| Velocity Mode<br>Torque Mode | INV B: ( <u>0x6860</u> ) | •   |     | •       |       |

Velocity Mode: presetSpeedSetp1 ... presetSpeedSetp16
Torque Mode: presetTorqueSetp1 ... presetTorqueSetp16

|                                              | Festso | llwert                                       |      |         | Eing    | änge    |         |
|----------------------------------------------|--------|----------------------------------------------|------|---------|---------|---------|---------|
| presetSpeed                                  | Setp   | presetTorqueSetp                             |      | FLX_IN4 | FLX_IN3 | FLX_IN2 | FLX_IN1 |
| INV A: <u>0x4040</u><br>INV B: <u>0x4050</u> | Sub    | INV A: <u>0x4040</u><br>INV B: <u>0x4050</u> | Sub  |         |         |         |         |
| 1                                            | 0x31   | 1                                            | 0x41 | 0       | 0       | 0       | 0       |
| 2                                            | 0x32   | 2                                            | 0x42 | 0       | 0       | 0       | 1       |
| 3                                            | 0x33   | 3                                            | 0x43 | 0       | 0       | 1       | 0       |
| 4                                            | 0x34   | 4                                            | 0x44 | 0       | 0       | 1       | 1       |
| 5                                            | 0x35   | 5                                            | 0x45 | 0       | 1       | 0       | 0       |
| 6                                            | 0x36   | 6                                            | 0x46 | 0       | 1       | 0       | 1       |
| 7                                            | 0x37   | 7                                            | 0x47 | 0       | 1       | 1       | 0       |
| 8                                            | 0x38   | 8                                            | 0x48 | 0       | 1       | 1       | 1       |
| 9                                            | 0x39   | 9                                            | 0x49 | 1       | 0       | 0       | 0       |
| 10                                           | 0x3A   | 10                                           | 0x4A | 1       | 0       | 0       | 1       |
| 11                                           | 0x3B   | 11                                           | 0x4B | 1       | 0       | 1       | 0       |
| 12                                           | 0x3C   | 12                                           | 0x4C | 1       | 0       | 1       | 1       |
| 13                                           | 0x3D   | 13                                           | 0x4D | 1       | 1       | 0       | 0       |
| 14                                           | 0x3E   | 14                                           | 0x4E | 1       | 1       | 0       | 1       |
| 15                                           | 0x3F   | 15                                           | 0x4F | 1       | 1       | 1       | 0       |
| 16                                           | 0x40   | 16                                           | 0x50 | 1       | 1       | 1       | 1       |

- Ist der vorgegebene Sollwert = 0, wird das Leistungsteil ausgeschaltet.
- Die Steuersignale für die Eingänge FLX\_IN1 ... FLX\_IN4 können Sie konfigurieren:
  - Einstellmöglichkeiten (🗆 50)


### 5.1 Grundeinstellungen

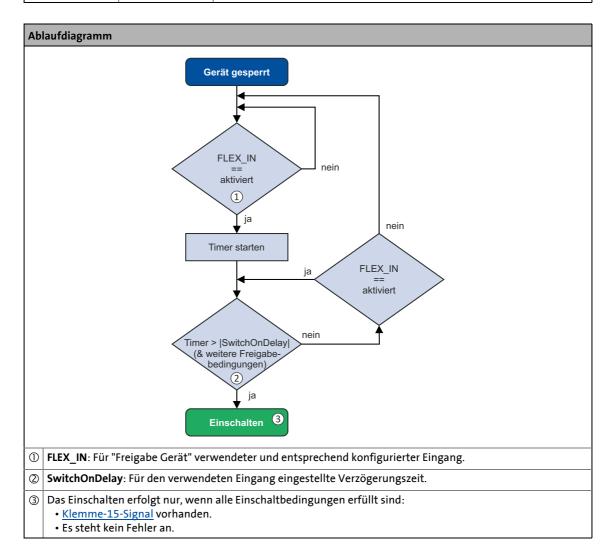
\_\_\_\_\_

## 5.1.1.3 Verzögerte Überwachung eines FLX\_IN

Diese Funktionalität dient zur Überwachung eines Drucksensors, der nach dem Einschalten des Kompressors zuerst Druck aufbauen muss. Aus diesem Grund muss er verzögert überwacht werden. Parametrierung dieser Funktionalität:

| Eingang | Parameter   | Einstellung                                                            |
|---------|-------------|------------------------------------------------------------------------|
| FLX_IN1 | 0x4010:0x40 | Funktionsbelegung: Für den verwendeten Eingang auf                     |
| FLX_IN2 | 0x4010:0x41 | Bei Störung Reaktion "Schnellhalt"     oder                            |
| FLX_IN3 | 0x4010:0x42 | Bei Störung Reaktion "Austrudeln"                                      |
| FLX_IN4 | 0x4010:0x43 | konfigurieren.                                                         |
| FLX_IN1 | 0x4010:0x44 | SwitchOnDelay: Für den verwendeten Eingang eine negative Verzögerungs- |
| FLX_IN2 | 0x4010:0x45 | zeit einstellen, um die Fehlerauslösung der Überwachung zu verzögern.  |
| FLX_IN3 | 0x4010:0x46 |                                                                        |
| FLX_IN4 | 0x4010:0x47 |                                                                        |




## 5.1 Grundeinstellungen

\_\_\_\_\_\_

## 5.1.1.4 Verzögertes Einschalten über einen FLX\_IN

Mit dieser Funktionalität kann der Einschaltbefehl verzögert werden, der über einen FLX\_IN erfolgt. Parametrierung dieser Funktionalität:

| Eingang | Parameter   | Einstellung                                                              |
|---------|-------------|--------------------------------------------------------------------------|
| FLX_IN1 | 0x4010:0x40 | Funktionsbelegung: Für den verwendeten Eingang auf "Freigabe Gerät" kon- |
| FLX_IN2 | 0x4010:0x41 | figurieren.                                                              |
| FLX_IN3 | 0x4010:0x42 |                                                                          |
| FLX_IN4 | 0x4010:0x43 |                                                                          |
| FLX_IN1 | 0x4010:0x44 | SwitchOnDelay: Für den verwendeten Eingang eine positive Verzögerungs-   |
| FLX_IN2 | 0x4010:0x45 | zeit einstellen, um den Einschaltbefehl zu verzögern.                    |
| FLX_IN3 | 0x4010:0x46 |                                                                          |
| FLX_IN4 | 0x4010:0x47 |                                                                          |



# 5.1 Grundeinstellungen

\_\_\_\_\_

# 5.1.1.5 Verzögertes Ausschalten über einen FLX\_IN

Mit dieser Funktionalität kann der Ausschaltbefehl verzögert werden, der über einen FLX\_IN erfolgt. Parametrierung dieser Funktionalität:

| Eingang | Parameter   | Einstellung                                                              |
|---------|-------------|--------------------------------------------------------------------------|
| FLX_IN1 | 0x4010:0x40 | Funktionsbelegung: Für den verwendeten Eingang auf "Freigabe Gerät" kon- |
| FLX_IN2 | 0x4010:0x41 | figurieren.                                                              |
| FLX_IN3 | 0x4010:0x42 |                                                                          |
| FLX_IN4 | 0x4010:0x43 |                                                                          |
| FLX_IN1 | 0x4010:0x48 | SwitchOffDelay: Für den verwendeten Eingang eine positive Verzögerungs-  |
| FLX_IN2 | 0x4010:0x49 | zeit einstellen, um den Ausschaltbefehl zu verzögern.                    |
| FLX_IN3 | 0x4010:0x4A |                                                                          |
| FLX_IN4 | 0x4010:0x4B |                                                                          |



# 5.1 Grundeinstellungen

\_\_\_\_\_\_

# 5.1.2 FLX\_OUT1 ... FLX\_OUT4

Für jeden der vier Ausgänge gibt es einen Parameter, mit dem die Funktion des Ausgangs konfiguriert werden kann:

| Ausgang  | Parameter   | Voreinstellung<br>MOBILE |      |         |       |
|----------|-------------|--------------------------|------|---------|-------|
|          |             | DCU                      | PSU  | DCU PSU | DCU s |
| FLX_OUT1 | 0x4010:0x50 | 1005                     | 1005 | 0       | 1005  |
| FLX_OUT2 | 0x4010:0x51 | 2005                     | 0    | 2005    | 0     |
| FLX_OUT3 | 0x4010:0x52 | 1001                     | 1001 | 0       | 1001  |
| FLX_OUT4 | 0x4010:0x53 | 2001                     | 0    | 2001    | 0     |

1001: Fehler INV A/DCDC (High-Pegel)

1005: Leistungsstufe von INV A/DCDC ist eingeschaltet (High-Pegel)

2001: Fehler INV B (High-Pegel)

2005: Leistungsstufe von INV B ist eingeschaltet (High-Pegel)

## Einstellmöglichkeiten

Nicht aufgeführte Werte haben keine Funktion.

| Wert      | Funktion                  | aktiver Pegel | Anmerkungen                                                                          |
|-----------|---------------------------|---------------|--------------------------------------------------------------------------------------|
| 0         | keine Funktion            | -             |                                                                                      |
| Statussig | gnale des Gerätes         |               |                                                                                      |
| 1         | Fehler                    | High          | INV A/DCDC oder INV B meldet Fehler                                                  |
| 2         |                           | Low           | (rote LED1 ist dauerhaft an).                                                        |
| 3         |                           | High          | INV A/DCDC und INV B melden Fehler                                                   |
| 4         |                           | Low           | (rote LED1 ist dauerhaft an).                                                        |
| 5         | Warnung oder Fehler       | High          | INV A/DCDC <b>oder</b> INV B meldet Fehler oder Warnung.                             |
| 6         |                           | Low           |                                                                                      |
| 7         |                           | High          | INV A/DCDC <b>und</b> INV B melden Fehler oder Warnung.                              |
| 8         |                           | Low           |                                                                                      |
| 9         | Gerät ist freigegeben     | High          | INV A/DCDC <b>oder</b> INV B ist freigegeben.                                        |
| 10        |                           | Low           |                                                                                      |
| 11        |                           | High          | INV A/DCDC und INV B sind freigegeben.                                               |
| 12        |                           | Low           |                                                                                      |
| 13        | Gerät ist einschaltbereit | High          | INV A/DCDC <b>oder</b> INV B ist einschaltbereit.                                    |
| 14        |                           | Low           |                                                                                      |
| 15        |                           | High          | INV A/DCDC <b>und</b> INV B sind einschaltbereit.                                    |
| 16        |                           | Low           |                                                                                      |
| 17        | Vorladung abgeschlossen   | High          | Signal kann z. B. für Ansteuerung Netzschütz verwendet werden.  • Precharge-Funktion |

# Application-Controller (APPC) Grundeinstellungen 5

# 5.1

| Wert      | Funktion                  | aktiver Pegel | Anmerkungen |
|-----------|---------------------------|---------------|-------------|
| Statussig | gnale INV A/DCDC          |               |             |
| 1001      | Fehler INV A/DCDC         | High          |             |
| 1002      |                           | Low           |             |
| 1003      |                           | High          |             |
| 1004      | INV A/DCDC                | Low           |             |
| 1005      |                           | High          |             |
| 1006      | ist freigegeben           | Low           |             |
| 1007      | ,                         | High          |             |
| 1008      | ist einschaltbereit       | Low           |             |
| Statussig | gnale INV B               |               |             |
| 2001      | Fehler INV B              | High          |             |
| 2002      |                           | Low           |             |
| 2003      | Warnung oder Fehler INV B | High          |             |
| 2004      |                           | Low           |             |
| 2005      | INV B ist freigegeben     | High          |             |
| 2006      |                           | Low           |             |
| 2007      | INV B ist einschaltbereit | High          |             |
| 2008      |                           | Low           |             |

#### 5.2 Automatischer Fault Reset

-----

#### 5.2 Automatischer Fault Reset

Tritt ein Fehler im Gerät auf, wechselt das Gerät in einen Fehlerzustand. Mit dem automatischen Fault Reset wird der jeweilige Inverterausgang (DCU/PSU) automatisch in den Zustand "Operational Mode" zurückgesetzt. In den folgenden Unterkapiteln werden die Funktionen und Einstellungen des automatischen Fault Reset beschrieben.

#### 5.2.1 Parameter

Folgende Parameter werden für die Konfiguration des Fault Reset benötigt. Die Parameter sind jeweils für Inverter A und B (DCU/PSU) verfügbar.

- mcFaultResetMaskH
- mcFaultResetMaskL
- mcResetTypeMaskH
- mcResetTypeMaskL
- mcFaultResetDelayTimer1
- mcCounterResetDelayTime1
- mcMaxResetNumber1
- mcFaultResetDelayTimer2
- mcCounterResetDelayTime2
- mcMaxResetNumber2

Die Parameter sind in diesen Kapiteln beschrieben:

- ▶ Einstellungen Drive Control Unit (DCU) (☐ 70)
- ▶ Einstellungen Power Supply Unit (PSU) (□ 80)

#### 5.2 **Automatischer Fault Reset**

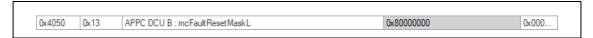
#### **Fault Reset einstellen** 5.2.2

Der automatische Fault Reset ist standardmässig deaktiviert und wird mittels Parameter konfiguriert. Die Konfiguration erfolgt mit Hilfe von Bits, die die Fehler beschreiben.

Die Selektion der Fehler, auf die ein Fault Reset erfolgen muss, wird über Bitmasken eingestellt. Die Fehlerbits sind im MC-Statuswort 1 und MC-Statuswort 2 enthalten. Bedeutung der Warnungsund Fehlerbits im MC-Statuswort 1 & 2 (1240)

#### 5.2.2.1 Auswahl der Fehlerbits

Von den Parametern mcFaultResetMask und mcResetTypeMask gibt es jeweils zwei Ausführungen, mit denen Sie die Fehlerbits in MC-Statuswort 1 und MC-Statuswort 2 auswählen.


| Parameter                             | Auswahl der Fehlerbits in |
|---------------------------------------|---------------------------|
| mcFaultResetMaskH<br>mcResetTypeMaskH | MC-Statuswort 2           |
| mcFaultResetMaskL<br>mcResetTypeMaskL | MC-Statuswort 1           |

#### 5.2.2.2 mcFaultResetMask

Mit mcFaultResetMask wird der Fault Reset für bestimmte Fehler eingeschaltet. Dem Parameter wird das erforderliche Fehlerbit des entsprechenden MC-Statusworts zugeordnet.

In der folgenden Abbildung wurde in Parameter mcFaultResetMaskL das Bit 31 (MOBILE Innenraum-Temperatur hat Fehlerschwelle erreicht) des MC-Statusworts 1 konfiguriert.

Sobald dieser Fehler auftritt, erfolgt ein Fault Reset. Ist der Fehler nicht mehr vorhanden, wechselt das Gerät automatisch in den Zustand "Operational Mode".





Sie können die Funktion auch für mehrere Fehler konfigurieren, indem Sie mittels Bitmaske mehrere Fehlerbits zuordnen.

#### Bits umrechnen

Mittles dem Microsoft-Rechner im Windows-Betriebssysten können Sie in der Funktion "Programmierer" einfach einen Binär-Wert in einen Hex-Wert umrechnen. Die Leserichtung ist von rechts nach links, die erste Ziffer ganz rechts ist somit Bit 1.

- Binär-Wert 1: Bit aktiviert
- Binär-Wert 0: Bit deaktiviert
- Beispiel:

Bit 3 und Bit 4 sollen aktiviert werden. Daraus ergibt sich der Binär-Wert "1100". Der umgerechnete Hex-Wert ist "0xC". Im Parameter tragen Sie somit den Hex-Wert "0xC" ein.

#### 5.2 Automatischer Fault Reset

-----

#### 5.2.2.3 mcResetTypeMask

Mit mcResetTypeMask können Sie mittels zwei Typen wählen, welche Parameter für den Fault Reset verwendet werden sollen.

| ResetTypeMask | Parameter für den Fault Reset                               |
|---------------|-------------------------------------------------------------|
| Тур 1         | MaxResetNumber1     FaultResetDelay1     CounterResetDelay1 |
| Тур 2         | MaxResetNumber2     FaultResetDelay2     CounterResetDelay2 |

- In mcResetTypeMask wird kein Wert eingetragen: Typ 1 zugeordnete Parameter werden verwendet.
- In mcResetTypeMask wird ein Fehlerbit eingetragen: Typ 2 zugeordnete Parameter werden verwendet.

#### 5.2.2.4 mcMaxResetNumber

Mit mcMaxResetNumber wird die Anzahl der erlaubten Fault-Reset-Versuche eingestellt. Die Wiederholung der Fault-Reset-Versuche ist erst möglich, wenn

- die in *mcCounterResetDelay* eingestellte Zeit ist abgelaufen, ohne dass sich das Gerät in einem Fehlerzustand befindet oder
- ein KL15-Fault-Reset wurde durchgeführt oder
- ein UDS-Fault-Reset wurde durchgeführt.

### 5.2.2.5 mcFaultResetDelayTime

Je nach Einstellung wird der Fault Reset so oft durchgeführt, bis kein Fehler mehr vorhanden ist oder die maximale Anzahl an Fault Resets erreicht wurde (mcMaxResetNumber).

Über *mcFaultResetDelayTime* wird die Zeit eingestellt, die zwischen jedem Fault-Reset-Versuch vergehen soll. Die Zeit wird in Millisekunden vorgegeben.

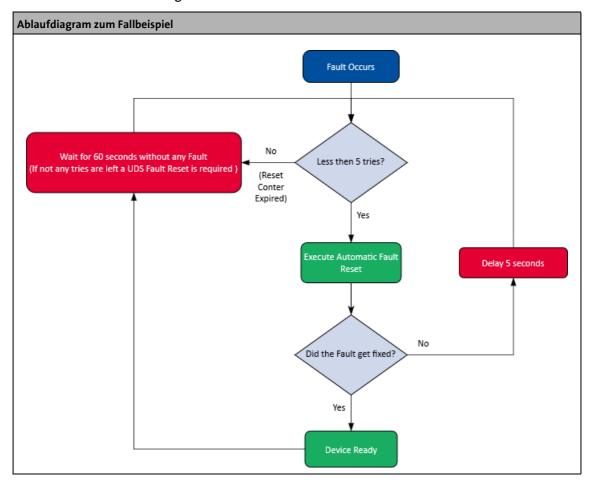
### 5.2.2.6 mcCounterResetDelay

Mit mcCounterResetDelay wird die Wartezeit eingestellt, die ablaufen muss, bis erneut Fault-Reset-Versuche durchgeführt werden.

- Der Zähler startet, wenn ein Fault Reset erfolgreich war oder das Gerät sich nicht mehr in einem Fehlerzustand befindet.
- Wechselt das Gerät während der Laufzeit des Zählers in den Fehlerzustand, wird der Zähler zurückgesetzt.
- Nach Ablauf des Z\u00e4hlers werden wieder automatische Fault-Reset-Versuche durchgef\u00fchrt.

#### 5.2 Automatischer Fault Reset

------


### 5.2.3 Fallbeispiel

In diesem Beispiel wird der Fehler "MOBILE Innenraum-Temperatur hat Fehlerschwelle erreicht" (Bit 31) simuliert.

Das Bit 31 gehört zum MC-Statuswort 1, dem die Parameter *mcFaultResetMaskL* und *mcResetTypeMaskL* zugeordnet sind.

- In Parameter mcFaultResetMaskL wird für Bit 31 der Hex-Wert "0x80000000" eingetragen.
- In Parameter mcResetTypeMaskL wird kein Wert eingetragen. Somit ist Typ 1 zugeordnet.

  Typ 1 wird mit den Standardwerten verwendet:
  - Maximale Anzahl von 5 Fault Resets
  - 5 Sekunden zwischen den Fault Resets
  - 60 Sekunden nachdem ein Fault Reset erfolgreich war oder das Gerät während der angegeben Zeit in keinem Fehlerzustand war.
- Nach der Parametrierung ist der automatische Fault Reset für diesen Fehler aktiviert.



# 5.3 Einstellungen Public CAN

\_\_\_\_\_

## 5.3 Einstellungen Public CAN

#### 0x4020 - APPC Public CAN

| Sub.          | Name                            | Voreinstellung | Datentyp   |
|---------------|---------------------------------|----------------|------------|
| ▶ <u>0x01</u> | baudrate                        | 5              | UNSIGNED8  |
| ▶ <u>0x02</u> | baseAddr                        | 234            | UNSIGNED8  |
| ▶ <u>0x03</u> | baseAddr XCP APPC               | 234            | UNSIGNED8  |
| ▶ <u>0x04</u> | baseAddr XCP MC                 | 220            | UNSIGNED8  |
| ▶ <u>0x20</u> | J1939 DM1 enable                | 0              | UNSIGNED8  |
| ▶ <u>0x21</u> | J1939 DM1 PL config             | 0x0000         | UNSIGNED16 |
| ▶ <u>0x22</u> | J1939 DM1 AWL config            | 0x0000         | UNSIGNED16 |
| ▶ <u>0x23</u> | J1939 DM1 RSL config            | 0x0000         | UNSIGNED16 |
| ▶ <u>0x24</u> | J1939 DM1 MIL config            | 0x0000         | UNSIGNED16 |
| ▶ <u>0x30</u> | enable short circuit monitoring | 0              | UNSIGNED8  |

#### Subindex 0x01: baudrate

Baudrate für Public CAN:

4 = 125 kBit/s

5 = 250 kBit/s

6 = 500 kBit/s

Alle anderen Einstellungen: 250 kBit/s

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 4 6             | 5              | UNSIGNED8 |

#### Subindex 0x02: baseAddr

#### Basis-Adresse für Public CAN

- Die reale CAN-Adresse setzt sich aus der Basis-Adresse plus dem über die ID-Pins eingestellten CAN-Adress-Offset zusammen.
- Geräte-Identifikation

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 0 255           | 234            | UNSIGNED8 |

| Subindex 0x03: baseAddr XCP APPC |                 |                |           |
|----------------------------------|-----------------|----------------|-----------|
| Skalierungsfaktor                | Einstellbereich | Voreinstellung | Datentyp  |
| 1                                | 0 255           | 234            | UNSIGNED8 |

| Subindex 0x04: baseAddr XCP MC |                 |                |           |
|--------------------------------|-----------------|----------------|-----------|
| Skalierungsfaktor              | Einstellbereich | Voreinstellung | Datentyp  |
| 1                              | 0 255           | 220            | UNSIGNED8 |

#### Subindex 0x20: J1939 DM1 enable

SAE J1939 Diagnose-Meldung DM1:

0 = Senden deaktiviert

1 = Senden aktiviert

▶ <u>DM1 - Active Diagnostic Trouble Codes</u>

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 0 1             | 0              | UNSIGNED8 |

### 5.3 Einstellungen Public CAN

#### Subindex 0x21: J1939 DM1 PL config

SAE J1939 Diagnose-Meldung DM1: "Protect Lamp"-Einschaltkriterien (Bitwert 0 = nein, 1 = ja)

Bit 0: Fehler Inverter A

Bit 1: Fehler Inverter B

Bit 2: temporärer Fehler Inverter A (Auto-Fehler-Reset aktiv)

Bit 3: temporärer Fehler Inverter B (Auto-Fehler-Reset aktiv)

Bit 4: Warnung Inverter A

Bit 5: Warnung Inverter B

▶ <u>DM1 - Active Diagnostic Trouble Codes</u>

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0x0000 0x003F   | 0x0000         | UNSIGNED16 |

#### Subindex 0x22: J1939 DM1 AWL config

SAE J1939 Diagnose-Meldung DM1: "Amber Warning Lamp"-Einschaltkriterien (Bitwert 0 = nein, 1 = ja)

Bit 0: Fehler Inverter A

Bit 1: Fehler Inverter B

Bit 2: temporärer Fehler Inverter A (Auto-Fehler-Reset aktiv)

Bit 3: temporärer Fehler Inverter B (Auto-Fehler-Reset aktiv)

Bit 4: Warnung Inverter A

Bit 5: Warnung Inverter B

▶ DM1 - Active Diagnostic Trouble Codes

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0x0000 0x003F   | 0x0000         | UNSIGNED16 |

#### Subindex 0x23: J1939 DM1 RSL config

SAE J1939 Diagnose-Meldung DM1: "Red Stop Lamp"-Einschaltkriterien (Bitwert 0 = nein, 1 = ja)

Bit 0: Fehler Inverter A

Bit 1: Fehler Inverter B

Bit 2: temporärer Fehler Inverter A (Auto-Fehler-Reset aktiv)

Bit 3: temporärer Fehler Inverter B (Auto-Fehler-Reset aktiv)

Bit 4: Warnung Inverter A

Bit 5: Warnung Inverter B

▶ <u>DM1 - Active Diagnostic Trouble Codes</u>

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0x0000 0x003F   | 0x0000         | UNSIGNED16 |

#### Subindex 0x24: J1939 DM1 MIL config

SAE J1939 Diagnose-Meldung DM1: "Malfunction Indicator Lamp"-Einschaltkriterien (Bitwert 0 = nein, 1 = ja)

Bit 0: Fehler Inverter A

Bit 1: Fehler Inverter B

Bit 2: temporärer Fehler Inverter A (Auto-Fehler-Reset aktiv)

Bit 3: temporärer Fehler Inverter B (Auto-Fehler-Reset aktiv)

Bit 4: Warnung Inverter A

Bit 5: Warnung Inverter B

▶ <u>DM1 - Active Diagnostic Trouble Codes</u>

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0x0000 0x003F   | 0x0000         | UNSIGNED16 |

# 5.3 Einstellungen Public CAN

| Subindex 0x30: enable short circuit monitoring |                                                                                                                                                                                                                 |                |           |  |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------|--|
| Einstellung "1" = Kurzschlus                   | Einstellung "0" = Kurzschlussüberwachung ist deaktiviert. Einstellung "1" = Kurzschlussüberwachung ist aktiviert. Bei aktivierter Überwachung wir bei einem Public CAN-Kurzschluss eine DTC-Warnung ausgegeben. |                |           |  |
| Skalierungsfaktor                              | Einstellbereich                                                                                                                                                                                                 | Voreinstellung | Datentyp  |  |
| 1                                              | 0 1                                                                                                                                                                                                             | 0              | UNSIGNED8 |  |

#### 0x4021 - APPC Public CAN Tx ID

Identifier für die <u>Public CAN transmit messages</u>

- Die Sender-Adresse (SA, Bit 0 ... 7) wird intern mit der realen CAN-Adresse des MOBILE überschrieben.
- PDU-Format (Bit 16 ... 23) ist fest "0xFF" (hersteller-spezifische Broadcast-Meldung).
- ▶ Parametergruppen (PGs): Identifier

| Sub. | Name        | Voreinstellung | Datentyp   |
|------|-------------|----------------|------------|
| 0x01 | msg0        | 0x18FF00EA     | UNSIGNED32 |
| 0x02 | msg1        | 0x18FF01EA     | UNSIGNED32 |
| 0x03 | msg2        | 0x18FF02EA     | UNSIGNED32 |
| 0x04 | msg3        | 0x18FF03EA     | UNSIGNED32 |
| 0x05 | Flex In Out | 0x18FF04EA     | UNSIGNED32 |
| 0x10 | XCP APPC    | 0x18EFFAF7     | UNSIGNED32 |
| 0x11 | XCP MC      | 0x18EFFAE9     | UNSIGNED32 |

#### 0x4022 - APPC Public CAN Tx Cycletime

Zykluszeit für die Public CAN transmit messages

• Einstellung "0" deaktiviert das Senden der entsprechenden Meldung.

| Sub. | Name        | Voreinstellung | Datentyp   |
|------|-------------|----------------|------------|
| 0x01 | msg0        | 100 ms         | UNSIGNED16 |
| 0x02 | msg1        | 100 ms         | UNSIGNED16 |
| 0x03 | msg2        | 100 ms         | UNSIGNED16 |
| 0x04 | msg3        | 100 ms         | UNSIGNED16 |
| 0x05 | Flex In Out | 0 ms           | UNSIGNED16 |

## 5.3 Einstellungen Public CAN

-----

### 0x4023 - APPC Public CAN Rx ID

Identifier für die Public CAN receive messages

- Als Sender-Adresse (SA, Bit 0 ... 7) ist die CAN-Adresse der übergeordneten Steuerung einzustellen (Voreinstellung: 0x80 = 128).
- Die Gerätenummer (PDU Specific; Bit 12 ... 15) wird intern mit der realen Gerätenummer des MOBILE überschrieben.
- PDU-Format (Bit 16 ... 23) ist fest "0xFF" (hersteller-spezifische Broadcast-Meldung).
- ▶ Parametergruppen (PGs): Identifier

| Sub. | Name        | Voreinstellung | Datentyp   |
|------|-------------|----------------|------------|
| 0x01 | msg0        | 0x18FF1080     | UNSIGNED32 |
| 0x02 | msg1        | 0x18FF1180     | UNSIGNED32 |
| 0x03 | msg2        | 0x18FF1280     | UNSIGNED32 |
| 0x04 | msg3        | 0x18FF1380     | UNSIGNED32 |
| 0x05 | Flex In Out | 0x18FF1480     | UNSIGNED32 |
| 0x10 | XCP APPC    | 0x18EFF7FA     | UNSIGNED32 |
| 0x11 | XCP MC      | 0x18EFE9FA     | UNSIGNED32 |

#### 0x4024 - APPC Public CAN Rx Timeout

Timeout-Zeit für die Public CAN receive messages

• Bei Einstellung "0" ist die Timeout-Überwachung der entsprechenden Meldung deaktiviert.

| Sub. | Name        | Voreinstellung | Datentyp   |
|------|-------------|----------------|------------|
| 0x01 | msg0        | 500 ms         | UNSIGNED16 |
| 0x02 | msg1        | 500 ms         | UNSIGNED16 |
| 0x03 | msg2        | 500 ms         | UNSIGNED16 |
| 0x04 | msg3        | 500 ms         | UNSIGNED16 |
| 0x05 | Flex In Out | 0 ms           | UNSIGNED16 |

### Einstellungen Public CAN

#### 0x4025 - APPC Public CAN Mapping

| Sub.          | Name                     | Voreinstellung | Datentyp   |
|---------------|--------------------------|----------------|------------|
| ▶ <u>0x01</u> | mappingPsuVoltageSignals | 0              | UNSIGNED8  |
| ▶ <u>0x02</u> | mappedFlexInOutSignal1   | 0              | UNSIGNED16 |
| ▶ <u>0x03</u> | mappedFlexInOutSignal2   | 0              | UNSIGNED16 |
| ▶ <u>0x04</u> | mappingMsg1DcuAByte3And4 | 0              | UNSIGNED16 |
| ▶ <u>0x05</u> | mappingMsg1DcuAByte7     | 0              | UNSIGNED16 |
| ▶ <u>0x06</u> | mappingMsg2DcuBByte3And4 | 0              | UNSIGNED16 |
| ▶ <u>0x07</u> | mappingMsg2DcuBByte7     | 0              | UNSIGNED16 |
| ▶ <u>0x08</u> | mappingMsg3PsuByte7      | 0              | UNSIGNED16 |

#### Subindex 0x01: mappingPsuVoltageSignals

Auswahl altes/neues Mapping für folgende Public CAN-Signale:

- "Sollwerte für Bordnetzwandler" Signal: "setp\_Voltage" (alt: Byte 4; neu: Byte 4 5)
- "Istwerte vom Bordnetzwandler" Signal: "act\_Voltage" (alt: Byte 1; neu: Byte 1 2)

Einstellung "0" = neues Mapping (2 Byte)

Einstellung "1" = altes Mapping (1 Byte; wie bei Release 52 und älter)

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 0 255           | 0              | UNSIGNED8 |

#### Subindex 0x02: mappedFlexInOutSignal1

Alle FLX\_IN/OUT können auf die Meldung "Gerätestatus des MOBILE" abgebildet werden.

Es kann nur ein Bit gesetzt werden:

Einstellung "1" (Bit 0) = FLX\_OUT1

Einstellung "2" (Bit 1) = FLX\_OUT2

Einstellung "4" (Bit 2) = FLX\_OUT3

Einstellung "8" (Bit 3) = FLX\_OUT4

Einstellung "16 (Bit 4) = FLX\_IN1 Einstellung "32 (Bit 5) = FLX\_IN2

Einstellung "64 (Bit 6) = FLX\_IN3

Einstellung "128 (Bit 7) = FLX\_IN4

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 65535         | 0              | UNSIGNED16 |

#### Subindex 0x03: mappedFlexInOutSignal2

Alle FLX\_IN/OUT können auf die Meldung "Gerätestatus des MOBILE" abgebildet werden.

Es kann nur ein Bit gesetzt werden:

Einstellung "1" (Bit 0) = FLX\_OUT1

Einstellung "2" (Bit 1) = FLX\_OUT2 Einstellung "4" (Bit 2) = FLX\_OUT3

Einstellung "8" (Bit 3) = FLX\_OUT4

Einstellung "16 (Bit 4) = FLX\_IN1

Einstellung "32 (Bit 5) = FLX\_IN2

Einstellung "64 (Bit 6) = FLX\_IN3

Einstellung "128 (Bit 7) = FLX\_IN4

Skalierungsfaktor Einstellbereich Voreinstellung Datentyp 0...65535 UNSIGNED16 0

### 5.3 Einstellungen Public CAN

.\_\_\_\_\_

#### Subindex 0x04: mappingMsg1DcuAByte3And4

Auswahl, welcher Wert in der Meldung "Istwerte von Motor A" (Byte 3 - 4) abgebildet werden soll.

Einstellung "0" = Motor A torque actual value (MC-Index 0x6077)

Einstellung "1" = Motor A current actual value (MC-Index 0x6078:0x08)

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 65535         | 0              | UNSIGNED16 |

#### Subindex 0x05: mappingMsg1DcuAByte7

Auswahl, welcher Wert in der Meldung "Istwerte von Motor A" (Byte 7) abgebildet werden soll.

Einstellung "0" = Motor A: temperature (MC-Index 0x2910:0x05)

Einstellung "1" = Power Module A: temperature (MC-Index 0x2810:0x08)

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 65535         | 0              | UNSIGNED16 |

#### Subindex 0x06: mappingMsg2DcuBByte3And4

Auswahl, welcher Wert in der Meldung "Istwerte von Motor B" (Byte 3 - 4) abgebildet werden soll.

Einstellung "0" = Motor B torque actual value (MC-Index 0x6877)

Einstellung "1" = Motor B current actual value (MC-Index 0x6878:0x08)

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 65535         | 0              | UNSIGNED16 |

#### Subindex 0x07: mappingMsg2DcuBByte7

Auswahl, welcher Wert in der Meldung "Istwerte von Motor B" (Byte 7) abgebildet werden soll.

Einstellung "0" = Motor B: temperature (MC-Index 0x3110:0x05)

Einstellung "1" = Power Module B: temperature (MC-Index 0x3010:0x08)

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 65535         | 0              | UNSIGNED16 |

#### Subindex 0x08: mappingMsg3PsuByte7

Auswahl, welcher Wert in der Meldung "Istwerte vom Bordnetzwandler" (Byte 7) abgebildet werden soll.

Einstellung "0" = DC Driver: temperature1 (MC-Index 0x2810:0x08), für das Leistungsteil

Einstellung "1" = DC Driver: temperature2 (MC-Index 0x2810:0x09), für den Trafokern

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 65535         | 0              | UNSIGNED16 |

### 5.4 Einstellungen Private CAN

------

## 5.4 Einstellungen Private CAN

#### 0x4030 - APPC Private CAN

| Sub.          | Name               | Voreinstellung | Datentyp   |
|---------------|--------------------|----------------|------------|
| ▶ <u>0x01</u> | baudrate           | 5              | UNSIGNED8  |
| ▶ <u>0x02</u> | baseAddrAppc       | 32             | UNSIGNED8  |
| ▶ <u>0x03</u> | baseAddrMc         | 1              | UNSIGNED8  |
| ▶ <u>0x04</u> | disable            | 0              | UNSIGNED8  |
| ▶ <u>0x05</u> | cycleTimeSetpoints | 20             | UNSIGNED16 |
| ▶ <u>0x06</u> | cycleTimeTimestamp | 20             | UNSIGNED16 |

#### Subindex 0x01: baudrate

Baudrate für Private CAN:

4 = 125 kBit/s

5 = 250 kBit/s

6 = 500 kBit/s

8 = 1 MBit/s

Alle anderen Einstellungen: 250 kBit/s

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 0 255           | 5              | UNSIGNED8 |

#### Subindex 0x02: baseAddrAppc

Basis-Adresse (Private CAN) des Application-Controllers (AppC)

 Die reale CAN-Adresse setzt sich aus der Basis-Adresse plus dem über die ID-Pins eingestellten CAN-Adress-Offset zusammen.

▶ Geräte-Identifikation

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 1 115           | 32             | UNSIGNED8 |

#### Subindex 0x03: baseAddrMc

Basis-Adresse (Private CAN) des Motor-Controllers (MC)

- Die reale CAN-Adresse für Kanal 1 setzt sich aus der Basis-Adresse plus dem über die ID-Pins eingestellten CAN-Adress-Offset zusammen.
- Die CAN-Adresse für Kanal 2 hat einen festen Offset von 63 zur CAN-Adresse für Kanal 1.
- ▶ Geräte-Identifikation

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 1 50            | 1              | UNSIGNED8 |

### Subindex 0x04: disable

Private CAN aktivieren/deaktivieren

0 = Private CAN ist aktiviert.

1 = Private CAN ist deaktiviert.

Bei deaktiviertem Private CAN ist kein Abschlusswiderstand erforderlich.

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 0 1             | 0              | UNSIGNED8 |

| Subindex 0x05: cycleTimeSe | etpoints        |                |            |
|----------------------------|-----------------|----------------|------------|
| Skalierungsfaktor          | Einstellbereich | Voreinstellung | Datentyp   |
| 1                          | 20 1000         | 20             | UNSIGNED16 |

# Application-Controller (APPC) Einstellungen Private CAN 5

| Subindex 0x06: cycleTimeTimestamp |                 |                |            |
|-----------------------------------|-----------------|----------------|------------|
| Skalierungsfaktor                 | Einstellbereich | Voreinstellung | Datentyp   |
| 1                                 | 20 1000         | 20             | UNSIGNED16 |

5.5 Einstellungen Drive Control Unit (DCU)

\_\_\_\_\_

# 5.5 Einstellungen Drive Control Unit (DCU)

0x4040 | 0x4050 - APPC DCU A/B



# Gefahr!

In der Voreinstellung des Parameters "useEmcySetp" (Subindex <u>0x05</u>) wird der Motorausgang bei einem CAN-Timeout weiter angesteuert!

| Sub.          | Name                        | Voreinstellung    | Datentyp   |
|---------------|-----------------------------|-------------------|------------|
| ▶ <u>0x01</u> | switchOnDelay               | 0 ms              | UNSIGNED16 |
| ▶ <u>0x02</u> | application                 | 0                 | UNSIGNED8  |
| ▶ <u>0x05</u> | useEmcySetp                 | 0                 | UNSIGNED8  |
| ▶ <u>0x06</u> | defaultDcLinkTolerance      | 0 V               | INT16      |
| ▶ <u>0x12</u> | mcFaultResetMaskH           | 0x00000000        | UNSIGNED32 |
| ▶ <u>0x13</u> | mcFaultResetMaskL           | 0x00000000        | UNSIGNED32 |
| ▶ <u>0x14</u> | mcResetTypeMaskH            | 0x00000000        | UNSIGNED32 |
| ▶ <u>0x15</u> | mcResetTypeMaskL            | 0x00000000        | UNSIGNED32 |
| ▶ <u>0x16</u> | mcFaultResetDelayTime1      | 5000 ms           | UNSIGNED16 |
| ▶ <u>0x17</u> | mcCounterResetDelayTime1    | 60000 ms          | UNSIGNED32 |
| ▶ <u>0x18</u> | mcMaxResetNumber1           | 5                 | UNSIGNED8  |
| ▶ <u>0x1A</u> | mcFaultResetDelayTime2      | 100 ms            | UNSIGNED16 |
| ▶ <u>0x1B</u> | mcCounterResetDelayTime2    | 10000 ms          | UNSIGNED32 |
| ▶ <u>0x1C</u> | mcMaxResetNumber2           | 10                | UNSIGNED8  |
| ▶ <u>0x20</u> | defaultSpeedSetp            | 0 rev/min         | INT32      |
| ▶ <u>0x21</u> | speedOff                    | 50.000976 rev/min | INT32      |
| ▶ <u>0x22</u> | torqueOff                   | 2 %               | INT16      |
| ▶ <u>0x2E</u> | defaultGeneratingPowerLimit | 0 %               | INT16      |
| ▶ <u>0x2F</u> | defaultMotoringPowerLimit   | 0 %               | INT16      |
| ▶ <u>0x30</u> | defaultTorqueSetp           | 0 %               | INT16      |
| ▶ <u>0x31</u> | presetSpeedSetp1            | 0 rev/min         | INT32      |
| ▶ <u>0x32</u> | presetSpeedSetp2            | 0 rev/min         | INT32      |
| ▶ <u>0x33</u> | presetSpeedSetp3            | 0 rev/min         | INT32      |
| ▶ <u>0x34</u> | presetSpeedSetp4            | 0 rev/min         | INT32      |
| ▶ <u>0x35</u> | presetSpeedSetp5            | 0 rev/min         | INT32      |
| ▶ <u>0x36</u> | presetSpeedSetp6            | 0 rev/min         | INT32      |
| ▶ <u>0x37</u> | presetSpeedSetp7            | 0 rev/min         | INT32      |
| ▶ <u>0x38</u> | presetSpeedSetp8            | 0 rev/min         | INT32      |
| ▶ <u>0x39</u> | presetSpeedSetp9            | 0 rev/min         | INT32      |
| ▶ <u>0x3A</u> | presetSpeedSetp10           | 0 rev/min         | INT32      |
| ▶ <u>0x3B</u> | presetSpeedSetp11           | 0 rev/min         | INT32      |
| ▶ <u>0x3C</u> | presetSpeedSetp12           | 0 rev/min         | INT32      |
| ▶ <u>0x3D</u> | presetSpeedSetp13           | 0 rev/min         | INT32      |
| ▶ <u>0x3E</u> | presetSpeedSetp14           | 0 rev/min         | INT32      |
| ▶ <u>0x3F</u> | presetSpeedSetp15           | 0 rev/min         | INT32      |
| ▶ <u>0x40</u> | presetSpeedSetp16           | 0 rev/min         | INT32      |

5

.\_\_\_\_\_

| Sub.          | Name               | Voreinstellung | Datentyp |
|---------------|--------------------|----------------|----------|
| ▶ <u>0x41</u> | presetTorqueSetp1  | 0 %            | INT32    |
| ▶ <u>0x42</u> | presetTorqueSetp2  | 0 %            | INT32    |
| ▶ <u>0x43</u> | presetTorqueSetp3  | 0 %            | INT32    |
| ▶ <u>0x44</u> | presetTorqueSetp4  | 0 %            | INT32    |
| ▶ <u>0x45</u> | presetTorqueSetp5  | 0 %            | INT32    |
| ▶ <u>0x46</u> | presetTorqueSetp6  | 0 %            | INT32    |
| ▶ <u>0x47</u> | presetTorqueSetp7  | 0 %            | INT32    |
| ▶ <u>0x48</u> | presetTorqueSetp8  | 0 %            | INT32    |
| ▶ <u>0x49</u> | presetTorqueSetp9  | 0 %            | INT32    |
| ▶ <u>0x4A</u> | presetTorqueSetp10 | 0 %            | INT32    |
| ▶ <u>0x4B</u> | presetTorqueSetp11 | 0 %            | INT32    |
| ▶ <u>0x4C</u> | presetTorqueSetp12 | 0 %            | INT32    |
| ▶ <u>0x4D</u> | presetTorqueSetp13 | 0 %            | INT32    |
| ▶ <u>0x4E</u> | presetTorqueSetp14 | 0 %            | INT32    |
| ▶ <u>0x4F</u> | presetTorqueSetp15 | 0 %            | INT32    |
| ▶ <u>0x50</u> | presetTorqueSetp16 | 0 %            | INT32    |

#### Subindex 0x01: switchOnDelay

#### Einschaltverzögerung

- Durch Einstellung einer Einschaltverzögerung lassen sich Verbraucher gestaffelt einschalten. Die Einschaltverzögerung wird gestartet, sobald alle Freigabebedingungen anstehen. Reglerfreigabe
- Bei Applikation "Steckdose" wird diese Zeit mit dem über die ID-Pins eingestellten CAN-Adress-Offset multipliziert. Geräte-Identifikation

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 65535 ms      | 0 ms           | UNSIGNED16 |

#### Subindex 0x02: application

## Auswahl der Applikation:

- 0 = Motor (Velocity Mode)
- 1 = Generator
- 3 = Steckdose
- 4 = Motor (Torque Mode)

andere Werte = keine Applikation

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 0 255           | 0              | UNSIGNED8 |

### Subindex 0x05: useEmcySetp

Verhalten, wenn eine Empfangsbotschaft länger als die eingestellte Timeout-Zeit ausgeblieben ist:

- 0 = Letzten empfangenen Sollwert verwenden
- 1 = Emergency-Sollwerte verwenden:
  - defaultDcLinkVoltage (0x4010:0x02)
  - defaultDcLinkTolerance (Subindex 0x06)
  - defaultSpeedSetp (Subindex 0x20)
  - defaultTorqueSetp (Subindex 0x30)
- 2 = Ausschalten

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 0 2             | 0              | UNSIGNED8 |

71

## .5 Einstellungen Drive Control Unit (DCU)

#### Subindex 0x06: defaultDcLinkTolerance

Dieser Wert wird verwendet, wenn über <u>Public CAN</u> der Sollwert *setp\_DcLinkTolerance* nicht verfügbar ist. Wird die DC-Zwischenkreis-Funktionalität nicht benötigt, ist hier 0 V einzustellen.

| Skalierungsfaktor  | Einstellbereich   | Voreinstellung | Datentyp |
|--------------------|-------------------|----------------|----------|
| 6.25000000000E-002 | -2048 2047.9375 V | 0 V            | INT16    |

#### Subindex 0x12: mcFaultResetMaskH

Bitmaske für die Festlegung der rücksetzbaren Fehlermeldungen des Motor-Controllers

Bit x = 0 → Fehlerbit x im MC-Statuswort 2 lässt sich nicht zurücksetzen

Bit  $x = 1 \rightarrow Fehlerbit x im MC-Statuswort 2 lässt sich zurücksetzen$ 

| Skalierungsfaktor | Einstellbereich      | Voreinstellung | Datentyp   |
|-------------------|----------------------|----------------|------------|
| 1                 | 0x00000000 0xFFFFFFF | 0x00000000     | UNSIGNED32 |

#### Subindex 0x13: mcFaultResetMaskL

Bitmaske für die Festlegung der rücksetzbaren Fehlermeldungen des Motor-Controllers

Bit  $x = 0 \rightarrow Fehlerbit x im MC-Statuswort 1 lässt sich nicht zurücksetzen$ 

Bit  $x = 1 \rightarrow Fehlerbit x im MC-Statuswort 1 lässt sich zurücksetzen$ 

| Skalierungsfaktor | Einstellbereich      | Voreinstellung | Datentyp   |
|-------------------|----------------------|----------------|------------|
| 1                 | 0x00000000 0xFFFFFFF | 0x00000000     | UNSIGNED32 |

#### Subindex 0x14: mcResetTypeMaskH

Bitmaske für die Festlegung des Fehlertyps der Fehlermeldungen des Motor-Controllers

Bit  $x = 0 \rightarrow Fehlerbit x im MC-Statuswort 2 ist vom Fehlertyp 1$ 

Bit  $x = 1 \rightarrow$  Fehlerbit x im MC-Statuswort 2 ist vom Fehlertyp 2

| Skalierungsfaktor | Einstellbereich      | Voreinstellung | Datentyp   |
|-------------------|----------------------|----------------|------------|
| 1                 | 0x00000000 0xFFFFFFF | 0x00000000     | UNSIGNED32 |

#### Subindex 0x15: mcResetTypeMaskL

Bitmaske für die Festlegung des Fehlertyps der Fehlermeldungen des Motor-Controllers

Bit  $x = 0 \rightarrow Fehlerbit x im MC-Statuswort 1 ist vom Fehlertyp 1$ 

Bit  $x = 1 \rightarrow$  Fehlerbit x im MC-Statuswort 1 ist vom Fehlertyp 2

| Skalierungsfaktor | Einstellbereich      | Voreinstellung | Datentyp   |
|-------------------|----------------------|----------------|------------|
| 1                 | 0x00000000 0xFFFFFFF | 0x00000000     | UNSIGNED32 |

#### Subindex 0x16: mcFaultResetDelayTime1

Zeitdauer, nach der sich erst Fehlermeldungen des Fehlertyps 1 zurücksetzen lassen.

| , ·               | 0 71            |                |            |
|-------------------|-----------------|----------------|------------|
| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
| 1                 | 0 65535 ms      | 5000 ms        | UNSIGNED16 |

#### Subindex 0x17: mcCounterResetDelayTime1

Zeitdauer, nach der der Zähler für Fehlermeldungen des Fehlertyps 1 zurückgesetzt wird.

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 4294967295 ms | 60000 ms       | UNSIGNED32 |

#### Subindex 0x18: mcMaxResetNumber1

Maximale Anzahl möglicher Fehler-Resets innerhalb der im Subindex 0x17 eingestellten Zeitdauer

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 0 255           | 5              | UNSIGNED8 |

### 5.5 Einstellungen Drive Control Unit (DCU)

.\_\_\_\_\_

| Subindex 0x1A: mcFaultResetDelayTime2                                               |            |        |            |
|-------------------------------------------------------------------------------------|------------|--------|------------|
| Zeitdauer, nach der sich erst Fehlermeldungen des Fehlertyps 2 zurücksetzen lassen. |            |        |            |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                           |            |        |            |
| 1                                                                                   | 0 65535 ms | 100 ms | UNSIGNED16 |

| Subindex 0x1B: mcCounterResetDelayTime2                                                 |                 |          |            |
|-----------------------------------------------------------------------------------------|-----------------|----------|------------|
| Zeitdauer, nach der der Zähler für Fehlermeldungen des Fehlertyps 2 zurückgesetzt wird. |                 |          |            |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                               |                 |          |            |
| 1                                                                                       | 0 4294967295 ms | 10000 ms | UNSIGNED32 |

| Subindex 0x1C: mcMaxResetNumber2                                                                      |       |    |           |
|-------------------------------------------------------------------------------------------------------|-------|----|-----------|
| Maximale Anzahl möglicher Fehler-Resets innerhalb der im Subindex <u>0x1B</u> eingestellten Zeitdauer |       |    |           |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                             |       |    |           |
| 1                                                                                                     | 0 255 | 10 | UNSIGNED8 |

### Subindex 0x20: defaultSpeedSetp

Drehzahlsollwert für "Stand-Alone-Betrieb" bzw. Emergency-Drehzahlsollwert

 Dieser Wert wird als Emergency-Drehzahlsollwert verwendet, wenn bei Steuerung über <u>Public CAN</u> der Sollwert setp\_Speed nicht verfügbar ist und im Subindex <u>0x05</u> der Wert "1" eingestellt ist.

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### Subindex 0x21: speedOff

Wird der Inverter ausgeschaltet, wird das Leistungsteil erst ausgeschaltet, wenn die aktuelle Drehzahl die hier eingestellte Drehzahl unterschritten hat.

• Das genaue Verhalten ist abhängig von der Applikation.

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung    | Datentyp |
|---------------------|------------------------|-------------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 50.000976 rev/min | INT32    |

### Subindex 0x22: torqueOff

Wird der Inverter ausgeschaltet, wird das Leistungsteil erst ausgeschaltet, wenn das aktuelle Drehmoment das hier eingestellte Drehmoment unterschritten hat.

• Das genaue Verhalten ist abhängig von der Applikation.

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 2 %            | INT16    |

| Subindex 0x2E: defaultGeneratingPowerLimit |                 |                |          |
|--------------------------------------------|-----------------|----------------|----------|
| Skalierungsfaktor                          | Einstellbereich | Voreinstellung | Datentyp |
| 0.1                                        | 0 3276.700000 % | 0 %            | INT16    |

| Subindex 0x2F: defaultMotoringPowerLimit |                 |                |          |
|------------------------------------------|-----------------|----------------|----------|
| Skalierungsfaktor                        | Einstellbereich | Voreinstellung | Datentyp |
| 0.1                                      | 0 3276.700000 % | 0 %            | INT16    |

### 5.5 Einstellungen Drive Control Unit (DCU)

-----

#### Subindex 0x30: defaultTorqueSetp

Drehmomentsollwert für "Stand-Alone-Betrieb" bzw. Emergency-Drehmomentsollwert

Dieser Wert wird als Emergency-Drehmomentsollwert verwendet, wenn bei Steuerung über <u>Public CAN</u> der Sollwert setp\_Torque nicht verfügbar ist und im Subindex <u>0x05</u> der Wert "1" eingestellt ist.

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT16    |

### Subindex 0x31: presetSpeedSetp1

### Drehzahlvorgabe für Festsollwert 1

 Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( <u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### Subindex 0x32: presetSpeedSetp2

### Drehzahlvorgabe für Festsollwert 2

• Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

#### Subindex 0x33: presetSpeedSetp3

#### Drehzahlvorgabe für Festsollwert 3

 Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( <u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### Subindex 0x34: presetSpeedSetp4

### Drehzahlvorgabe für Festsollwert 4

 Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### Subindex 0x35: presetSpeedSetp5

### Drehzahlvorgabe für Festsollwert 5

• Im Betriebsmodus <u>Velocity\_Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

#### Subindex 0x36: presetSpeedSetp6

### Drehzahlvorgabe für Festsollwert 6

• Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### 5.5 Einstellungen Drive Control Unit (DCU)

-----

### Subindex 0x37: presetSpeedSetp7

#### Drehzahlvorgabe für Festsollwert 7

 Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( <u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### Subindex 0x38: presetSpeedSetp8

#### Drehzahlvorgabe für Festsollwert 8

 Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( <u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### Subindex 0x39: presetSpeedSetp9

### Drehzahlvorgabe für Festsollwert 9

• Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### Subindex 0x3A: presetSpeedSetp10

#### Drehzahlvorgabe für Festsollwert 10

 Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( <u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### Subindex 0x3B: presetSpeedSetp11

### Drehzahlvorgabe für Festsollwert 11

 Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### Subindex 0x3C: presetSpeedSetp12

### Drehzahlvorgabe für Festsollwert 12

• Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### Subindex 0x3D: presetSpeedSetp13

### Drehzahlvorgabe für Festsollwert 13

• Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### .5 Einstellungen Drive Control Unit (DCU)

-----

### Subindex 0x3E: presetSpeedSetp14

### Drehzahlvorgabe für Festsollwert 14

 Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( <u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### Subindex 0x3F: presetSpeedSetp15

### Drehzahlvorgabe für Festsollwert 15

 Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( <u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### Subindex 0x40: presetSpeedSetp16

### Drehzahlvorgabe für Festsollwert 16

• Im Betriebsmodus <u>Velocity Mode</u> wird der Drehzahlsollwert über die Eingänge FLX\_IN ausgewählt ( Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4).

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### Subindex 0x41: presetTorqueSetp1

### Drehmomentvorgabe für Festsollwert 1

Im Betriebsmodus <u>Profile Torque Mode</u> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (<u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

### Subindex 0x42: presetTorqueSetp2

### Drehmomentvorgabe für Festsollwert 2

• Im Betriebsmodus <a href="Profile Torque Mode">Profile Torque Mode</a> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (<a href="Modes Eingänge FLX">Konfiguration der Eingänge FLX IN1</a> ... FLX IN4).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

### Subindex 0x43: presetTorqueSetp3

### Drehmomentvorgabe für Festsollwert 3

Im Betriebsmodus <u>Profile Torque Mode</u> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (<u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

#### Subindex 0x44: presetTorqueSetp4

### Drehmomentvorgabe für Festsollwert 4

Im Betriebsmodus <u>Profile Torque Mode</u> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (<u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

### 5 Einstellungen Drive Control Unit (DCU)

-----

### Subindex 0x45: presetTorqueSetp5

#### Drehmomentvorgabe für Festsollwert 5

 Im Betriebsmodus <u>Profile Torque Mode</u> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt ( <u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

### Subindex 0x46: presetTorqueSetp6

### Drehmomentvorgabe für Festsollwert 6

Im Betriebsmodus <u>Profile Torque Mode</u> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (<u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

### Subindex 0x47: presetTorqueSetp7

### Drehmomentvorgabe für Festsollwert 7

 Im Betriebsmodus <u>Profile Torque Mode</u> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (\_ Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

#### Subindex 0x48: presetTorqueSetp8

### Drehmomentvorgabe für Festsollwert 8

Im Betriebsmodus <u>Profile Torque Mode</u> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (<u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

### Subindex 0x49: presetTorqueSetp9

### Drehmomentvorgabe für Festsollwert 9

Im Betriebsmodus <u>Profile Torque Mode</u> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (<u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

### Subindex 0x4A: presetTorqueSetp10

### Drehmomentvorgabe für Festsollwert 10

Im Betriebsmodus <u>Profile Torque Mode</u> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (<u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

#### Subindex 0x4B: presetTorqueSetp11

### Drehmomentvorgabe für Festsollwert 11

• Im Betriebsmodus <a href="Profile Torque Mode">Profile Torque Mode</a> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (<a href="Month Eingänge FLX">Month Eingänge FLX IN1</a> ... FLX IN4).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

### Einstellungen Drive Control Unit (DCU)

-----

### Subindex 0x4C: presetTorqueSetp12

#### Drehmomentvorgabe für Festsollwert 12

• Im Betriebsmodus <a href="Profile Torque Mode">Profile Torque Mode</a> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (<a href="Monthsquare">Konfiguration der Eingänge FLX IN1 ... FLX IN4</a>).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

### Subindex 0x4D: presetTorqueSetp13

### Drehmomentvorgabe für Festsollwert 13

 Im Betriebsmodus <u>Profile Torque Mode</u> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt ( <u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

### Subindex 0x4E: presetTorqueSetp14

### Drehmomentvorgabe für Festsollwert 14

• Im Betriebsmodus <a href="Profile Torque Mode">Profile Torque Mode</a> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (\_Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

### Subindex 0x4F: presetTorqueSetp15

### Drehmomentvorgabe für Festsollwert 15

Im Betriebsmodus <u>Profile Torque Mode</u> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (<u>Konfiguration der Eingänge FLX\_IN1 ... FLX\_IN4</u>).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

### Subindex 0x50: presetTorqueSetp16

### Drehmomentvorgabe für Festsollwert 16

• Im Betriebsmodus <a href="Profile Torque Mode">Profile Torque Mode</a> wird der Drehmomentsollwert über die Eingänge FLX\_IN ausgewählt (<a href="Mode">Konfiguration der Eingänge FLX\_IN1</a> ... FLX\_IN4).

| Skalierungsfaktor | Einstellbereich       | Voreinstellung | Datentyp |
|-------------------|-----------------------|----------------|----------|
| 0.1               | -3276.8 3276.700000 % | 0 %            | INT32    |

5.5 Einstellungen Drive Control Unit (DCU)

\_\_\_\_\_

### 5.5.1 Auswahl der Applikation

Die Applikation für den Inverter ist konfigurierbar. Der folgenden Tabelle können Sie entnehmen, welche Applikation mit welchem Motorregelungsverfahren kombinierbar ist:

| Applikation    | 1           | Motor/Motorregelungsverfahren |                                                     |                 |                     |              |
|----------------|-------------|-------------------------------|-----------------------------------------------------|-----------------|---------------------|--------------|
|                |             | Д                             | Asynchronmotor (ASM)                                |                 | Synchronmotor (PSM) |              |
|                |             | ohne                          | Geber                                               | mit Geber       | ohne Geber          | mit Geber    |
|                |             | <u>SLVFCI</u>                 | <u>SLVCI</u>                                        | <u>VCI</u>      | <u>SLVCS</u>        | <u>VCS</u>   |
| Velocity Mo    | ode         | •                             | •                                                   | •               | •                   | •            |
| Generator Mode |             | •                             | •                                                   | •               | •                   | •            |
| Steckdose      |             | •                             |                                                     |                 |                     |              |
| Torque Mod     | de          |                               | •                                                   | •               |                     | •            |
| Ausgang In     | verter:     | Legende:                      |                                                     |                 |                     |              |
| INV A          | 0x4040:0x02 | SLVFCI                        | Sensorlose U/f                                      | f-Kennlinienste | uerung für Asyn     | chronmotoren |
| INV B          | 0x4050:0x02 | SLVCI                         | Sensorlose Vektorregelung für Asynchronmotoren      |                 | toren               |              |
|                |             | VCI                           | Vektorregelung für Asynchronmotoren                 |                 |                     |              |
|                |             | SLVCS                         | SLVCS Sensorlose Vektorregelung für Synchronmotoren |                 |                     | oren         |
|                |             | VCS                           | Vektorregelun                                       | g für Synchronr | notoren             |              |



Eine ausführliche Beschreibung der verschiedenen Motorregelungsverfahren finden Sie im Kapitel "Übersicht der Regelungsarten".

5.6 Einstellungen Power Supply Unit (PSU)

\_\_\_\_\_

### 5.6 Einstellungen Power Supply Unit (PSU)

### 0x4060 - APPC PSU A

| Sub.          | Name                     | Voreinstellung | Datentyp   |
|---------------|--------------------------|----------------|------------|
| ▶ <u>0x01</u> | switchOnDelay            | 0 ms           | UNSIGNED16 |
| ▶ <u>0x02</u> | application              | 2              | UNSIGNED8  |
| ▶ <u>0x05</u> | useEmcySetp              | 0              | UNSIGNED8  |
| ▶ <u>0x06</u> | defaultDcLinkTolerance   | 0 V            | INT16      |
| ▶ <u>0x12</u> | mcFaultResetMaskH        | 0x0000000      | UNSIGNED32 |
| ▶ <u>0x13</u> | mcFaultResetMaskL        | 0x0000000      | UNSIGNED32 |
| ▶ <u>0x14</u> | mcResetTypeMaskH         | 0x0000000      | UNSIGNED32 |
| ▶ <u>0x15</u> | mcResetTypeMaskL         | 0x0000000      | UNSIGNED32 |
| ▶ <u>0x16</u> | mcFaultResetDelayTime1   | 5000 ms        | UNSIGNED16 |
| ▶ <u>0x17</u> | mcCounterResetDelayTime1 | 60000 ms       | UNSIGNED32 |
| ▶ <u>0x18</u> | mcMaxResetNumber1        | 5              | UNSIGNED8  |
| ▶ <u>0x1A</u> | mcFaultResetDelayTime2   | 100 ms         | UNSIGNED16 |
| ▶ <u>0x1B</u> | mcCounterResetDelayTime2 | 10000 ms       | UNSIGNED32 |
| ▶ <u>0x1C</u> | mcMaxResetNumber2        | 10             | UNSIGNED8  |
| ▶ <u>0x20</u> | defaultCurrentSetp       | 200 A          | INT16      |
| ▶ <u>0x30</u> | defaultVoltageSetp       | 28 V           | INT16      |

### Subindex 0x01: switchOnDelay

### Einschaltverzögerung

• Durch Einstellung einer Einschaltverzögerung lassen sich Verbraucher gestaffelt einschalten. Die Einschaltverzögerung wird gestartet, sobald alle Freigabebedingungen anstehen. • Reglerfreigabe

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 65535 ms      | 0 ms           | UNSIGNED16 |

### Subindex 0x02: application

Auswahl der Applikation:

2 = Power Supply Unit (PSU)

andere Werte = keine Applikation

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 0 255           | 2              | UNSIGNED8 |

### Subindex 0x05: useEmcySetp

Verhalten, wenn eine Empfangsbotschaft länger als die eingestellte Timeout-Zeit ausgeblieben ist:

- 0 = Letzten empfangenen Sollwert verwenden
- 1 = Emergency-Sollwerte verwenden:
- defaultDcLinkVoltage (0x4010:0x02)
- defaultDcLinkTolerance (Subindex 0x06)
- defaultCurrentSetp (Subindex 0x20)
- defaultVoltageSetp (Subindex 0x30)
- 2 = Ausschalten

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
|-------------------|-----------------|----------------|-----------|
| 1                 | 0 2             | 0              | UNSIGNED8 |

300-I-9052004-DE-04/09.2023

### .6 Einstellungen Power Supply Unit (PSU)

.\_\_\_\_\_

#### Subindex 0x06: defaultDcLinkTolerance

Dieser Wert wird verwendet, wenn über <u>Public CAN</u> der Sollwert <u>setp\_DcLinkTolerance</u> nicht verfügbar ist. Wird die DC-Zwischenkreis-Funktionalität nicht benötigt, ist hier der Minimalmalwert (-2048 V) einzustellen.

| Skalierungsfaktor  | Einstellbereich   | Voreinstellung | Datentyp |
|--------------------|-------------------|----------------|----------|
| 6.25000000000E-002 | -2048 2047.9375 V | 0 V            | INT16    |

### Subindex 0x12: mcFaultResetMaskH

Bitmaske für die Festlegung der rücksetzbaren Fehlermeldungen des Motor-Controllers

Bit  $x = 0 \rightarrow$  Fehlerbit x im MC-Statuswort 2 lässt sich nicht zurücksetzen

Bit  $x = 1 \rightarrow Fehlerbit x im MC-Statuswort 2 lässt sich zurücksetzen$ 

| Skalierungsfaktor | Einstellbereich      | Voreinstellung | Datentyp   |
|-------------------|----------------------|----------------|------------|
| 1                 | 0x00000000 0xFFFFFFF | 0x00000000     | UNSIGNED32 |

#### Subindex 0x13: mcFaultResetMaskL

Bitmaske für die Festlegung der rücksetzbaren Fehlermeldungen des Motor-Controllers

Bit  $x = 0 \rightarrow Fehlerbit x im MC-Statuswort 1 lässt sich nicht zurücksetzen$ 

Bit  $x = 1 \rightarrow Fehlerbit x im MC-Statuswort 1 lässt sich zurücksetzen$ 

| Skalierungsfaktor | Einstellbereich      | Voreinstellung | Datentyp   |  |
|-------------------|----------------------|----------------|------------|--|
| 1                 | 0x00000000 0xFFFFFFF | 0x00000000     | UNSIGNED32 |  |

### Subindex 0x14: mcResetTypeMaskH

Bitmaske für die Festlegung des Fehlertyps der Fehlermeldungen des Motor-Controllers

Bit  $x = 0 \rightarrow Fehlerbit x im MC-Statuswort 2 ist vom Fehlertyp 1$ 

Bit  $x = 1 \rightarrow$  Fehlerbit x im MC-Statuswort 2 ist vom Fehlertyp 2

| Skalierungsfaktor | Einstellbereich      | Voreinstellung | Datentyp   |
|-------------------|----------------------|----------------|------------|
| 1                 | 0x00000000 0xFFFFFFF | 0x00000000     | UNSIGNED32 |

### Subindex 0x15: mcResetTypeMaskL

Bitmaske für die Festlegung des Fehlertyps der Fehlermeldungen des Motor-Controllers

Bit  $x = 0 \rightarrow Fehlerbit x im MC-Statuswort 1 ist vom Fehlertyp 1$ 

Bit  $x = 1 \rightarrow$  Fehlerbit x im MC-Statuswort 1 ist vom Fehlertyp 2

| Skalierungsfaktor | Einstellbereich      | Voreinstellung | Datentyp   |  |
|-------------------|----------------------|----------------|------------|--|
| 1                 | 0x00000000 0xFFFFFFF | 0x00000000     | UNSIGNED32 |  |

### Subindex 0x16: mcFaultResetDelayTime1

Zeitdauer, nach der sich erst Fehlermeldungen des Fehlertyps 1 zurücksetzen lassen.

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |  |
|-------------------|-----------------|----------------|------------|--|
| 1                 | 0 65535 ms      | 5000 ms        | UNSIGNED16 |  |

### Subindex 0x17: mcCounterResetDelayTime1

Zeitdauer, nach der der Zähler für Fehlermeldungen des Fehlertyps 1 zurückgesetzt wird.

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |  |
|-------------------|-----------------|----------------|------------|--|
| 1                 | 0 4294967295 ms | 60000 ms       | UNSIGNED32 |  |

### Subindex 0x18: mcMaxResetNumber1

Maximale Anzahl möglicher Fehler-Resets innerhalb der im 0x17 eingestellten Zeitdauer

| 0                 |                 | 0              |           |
|-------------------|-----------------|----------------|-----------|
| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp  |
| 1                 | 0 255           | 5              | UNSIGNED8 |

### 5.6 Einstellungen Power Supply Unit (PSU)

-----

| Subindex 0x1A: mcFaultResetDelayTime2                                               |                 |                |            |
|-------------------------------------------------------------------------------------|-----------------|----------------|------------|
| Zeitdauer, nach der sich erst Fehlermeldungen des Fehlertyps 2 zurücksetzen lassen. |                 |                |            |
| Skalierungsfaktor                                                                   | Einstellbereich | Voreinstellung | Datentyp   |
| 1                                                                                   | 0 65535 ms      | 100 ms         | UNSIGNED16 |

| Subindex 0x1B: mcCounterResetDelayTime2  Zeitdauer, nach der der Zähler für Fehlermeldungen des Fehlertyps 2 zurückgesetzt wird. |            |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
|                                                                                                                                  |            |  |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                                                        |            |  |  |
| 1                                                                                                                                | UNSIGNED32 |  |  |

| Subindex 0x1C: mcMaxResetNumber2  Maximale Anzahl möglicher Fehler-Resets innerhalb der im 0x1B eingestellten Zeitdauer |                 |                |           |
|-------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|-----------|
|                                                                                                                         |                 |                |           |
| Skalierungsfaktor                                                                                                       | Einstellbereich | Voreinstellung | Datentyp  |
| 1                                                                                                                       | 0 255           | 10             | UNSIGNED8 |

### Subindex 0x20: defaultCurrentSetp

Maximaler Ausgangsstrom für DC/DC-Wandler im "Stand-Alone-Betrieb" bzw. Emergency-Maximalstromsollwert

• Dieser Wert wird als Emergency-Maximalstromsollwert verwendet, wenn bei Steuerung über Public CAN der
Sollwert setp\_MaxCurrent nicht verfügbar ist und im Subindex 0x05 der Wert "1" eingestellt ist.

| Skalierungsfaktor   | Einstellbereich | Voreinstellung | Datentyp |
|---------------------|-----------------|----------------|----------|
| 1.562500000000E-002 | 0 511.984375 A  | 200 A          | INT16    |

### Subindex 0x30: defaultVoltageSetp

Spannungssollwert für DC/DC-Wandler im "Stand-Alone-Betrieb" bzw. Emergency-Spannungssollwert

Dieser Wert wird als Emergency-Spannungssollwert verwendet, wenn bei Steuerung über Public CAN der Sollwert setp\_Voltage nicht verfügbar ist und im Subindex 0x05 der Wert "1" eingestellt ist.

| Skalierungsfaktor   | Einstellbereich | Voreinstellung | Datentyp |
|---------------------|-----------------|----------------|----------|
| 1.953125000000E-003 | 0 63.998046 V   | 28 V           | INT16    |

### 6.1 Kommunikationsobjekte

-----

### 6 Motor-Controller (MC)

Dieses Kapitel beschreibt die Parametrierung des Motor-Controllers (MC).

### 6.1 Kommunikationsobjekte

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                                   | MOBILE |     |         |       |
|---------------|----------------------------------------|--------|-----|---------|-------|
|               |                                        |        | PSU | DCU PSU | DCU S |
| <u>0x1400</u> | Receive PDO Communication Parameter 1  | •      | •   | •       | •     |
| <u>0x1401</u> | Receive PDO Communication Parameter 2  | •      | •   | •       | •     |
| <u>0x1402</u> | Receive PDO Communication Parameter 3  | •      | •   | •       |       |
| <u>0x1403</u> | Receive PDO Communication Parameter 4  | •      | •   | •       |       |
| 0x1404        | Receive PDO Communication Parameter 5  | •      | •   | •       | •     |
| <u>0x1800</u> | Transmit PDO Communication Parameter 1 | •      | •   | •       | •     |
| 0x1801        | Transmit PDO Communication Parameter 2 | •      | •   | •       | •     |
| 0x1802        | Transmit PDO Communication Parameter 3 | •      | •   | •       | •     |
| 0x1803        | Transmit PDO Communication Parameter 4 | •      | •   | •       | •     |
| 0x1804        | Transmit PDO Communication Parameter 5 | •      | •   | •       |       |
| 0x1805        | Transmit PDO Communication Parameter 6 | •      | •   | •       |       |
| 0x1806        | Transmit PDO Communication Parameter 7 | •      | •   | •       |       |

### 0x1400 ... 0x1404 - Receive PDO Communication Parameter 1 ... 5

| Index       | Name                                       | Voreinstellung |         | Datentyp   |
|-------------|--------------------------------------------|----------------|---------|------------|
|             |                                            | DCU/DCU        | PSU/DCU |            |
| 0x1400:0x05 | Receive PDO Comm. Parameter 1: Event Timer | 100 ms         | 100 ms  | UNSIGNED16 |
| 0x1401:0x05 | Receive PDO Comm. Parameter 2: Event Timer | 100 ms         | 0       | UNSIGNED16 |
| 0x1402:0x05 | Receive PDO Comm. Parameter 3: Event Timer | 100 ms         | 100 ms  | UNSIGNED16 |
| 0x1403:0x05 | Receive PDO Comm. Parameter 4: Event Timer | 100 ms         | 100 ms  | UNSIGNED16 |
| 0x1404:0x05 | Receive PDO Comm. Parameter 5: Event Timer | 100 ms         | 100 ms  | UNSIGNED16 |

### 0x1800 ... 0x1806 - Transmit PDO Communication Parameter 1 ... 7

| Index       | Name                                        | Voreinstellung |         | Datentyp   |
|-------------|---------------------------------------------|----------------|---------|------------|
|             |                                             | DCU/DCU        | PSU/DCU |            |
| 0x1800:0x05 | Transmit PDO Comm. Parameter 1: Event Timer | 20 ms          | 20 ms   | UNSIGNED16 |
| 0x1801:0x05 | Transmit PDO Comm. Parameter 2: Event Timer | 20 ms          | 20 ms   | UNSIGNED16 |
| 0x1802:0x05 | Transmit PDO Comm. Parameter 3: Event Timer | 20 ms          | 20 ms   | UNSIGNED16 |
| 0x1803:0x05 | Transmit PDO Comm. Parameter 4: Event Timer | 20 ms          | 20 ms   | UNSIGNED16 |
| 0x1804:0x05 | Transmit PDO Comm. Parameter 5: Event Timer | 20 ms          | 20 ms   | UNSIGNED16 |
| 0x1805:0x05 | Transmit PDO Comm. Parameter 6: Event Timer | 20 ms          | 20 ms   | UNSIGNED16 |
| 0x1806:0x05 | Transmit PDO Comm. Parameter 7: Event Timer | 20 ms          | 20 ms   | UNSIGNED16 |

### 6.2 Grundeinstellungen

\_\_\_\_\_

### 6.2 Grundeinstellungen

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                          | MOBILE |     |         |       |
|---------------|-------------------------------|--------|-----|---------|-------|
|               |                               | DCU    | PSU | DCU PSU | DCU S |
| <u>0x2730</u> | Plug Cover                    | •      | •   | •       |       |
| <u>0x2732</u> | DC Link                       | •      | •   | •       | •     |
| <u>0x2810</u> | Power Module INV A (Clamping) | •      |     |         | •     |
| <u>0x3010</u> | Power Module INV B (Clamping) | •      |     | •       |       |
| <u>0x2900</u> | Inverter Supervision INV A    | •      |     |         | •     |
| <u>0x3100</u> | Inverter Supervision INV B    | •      |     | •       |       |
| 0x2901        | Inverter INV A                | •      |     |         | •     |
| <u>0x3101</u> | Inverter INV B                | •      |     | •       |       |

### 0x2730 - Plug Cover

| Subindex 0x05: config                                                                                                                    |     |   |            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-----|---|------------|--|--|
| Überwachung auf geöffnete MOBILE-Abdeckung: 0 = deaktiviert 1 = aktiviert Hinweis: Die Überwachung ist bei MOBILE DCU S nicht vorhanden. |     |   |            |  |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                                                                |     |   |            |  |  |
| 1                                                                                                                                        | 0 1 | 1 | UNSIGNED16 |  |  |

### 0x2732 - DC Link

| Sub.          | Name               | Voreinstellung | Datentyp |
|---------------|--------------------|----------------|----------|
| ▶ <u>0x07</u> | voltage min        | 0 V            | INT16    |
| ▶ <u>0x0D</u> | voltage ripple max | 0 V            | INT16    |

| Subindex 0x07: voltage min                                                                                                                                                                                                                    |         |                                      |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------|--|--|--|--|
| Einstellbare Schwelle für die Überwachung auf DC-Zwischenkreis-Unterspannung  • Wird die hier eingestellte Schwelle unterschritten, wird im MC-Statuswort 1 das Fehlerbit 12 gesetzt.  • Bei Einstellung "0" ist die Überwachung deaktiviert. |         |                                      |  |  |  |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                                                                                                                                                                     |         |                                      |  |  |  |  |
| 6.25000000000E-002                                                                                                                                                                                                                            | 0 900 V | 6.25000000000E-002 0 900 V 0 V INT16 |  |  |  |  |

| Subindex 0x0D: voltage ripple max                                                                                                                                                                                                                               |         |     |       |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|-------|--|--|
| Einstellbare Schwelle für die Überwachung auf zu hohe überlagerte Wechselspannung im DC-Zwischenkreis  • Wird die hier eingestellte Schwelle erreicht, wird im MC-Statuswort 2 das Fehlerbit 2 gesetzt.  • Bei Einstellung "0" ist die Überwachung deaktiviert. |         |     |       |  |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                                                                                                                                                                                       |         |     |       |  |  |
| 6.25000000000E-002                                                                                                                                                                                                                                              | 0 400 V | 0 V | INT16 |  |  |

### 6.2 Grundeinstellungen

\_\_\_\_\_

### 0x2810 | 0x3010 - Power Module A/B

| Sub.          | Name             | Voreinstellung | Datentyp   |
|---------------|------------------|----------------|------------|
| ▶ <u>0x09</u> | clamping timeout | 1.024 s        | UNSIGNED16 |
| ▶ <u>0x0B</u> | clamping factor  | 0.780029       | UNSIGNED16 |
| ▶ <u>0x0C</u> | clamping config  | 0x0A           | UNSIGNED16 |

### Subindex 0x09: clamping timeout

### Timeout-Zeit für Clamping

- Beim Anfahren insbesondere im U/f-Betrieb kann der Motorstrom sehr hoch sein und zu einer Überstromabschaltung führen. Um dies zu verhindern, wird ein sogenanntes "Clamping" durchgeführt: Erreicht der Ausgangsstrom den Wert aus "Abschaltschwelle × clamping factor", setzt die Hardwareüberwachung den CLAMP-Pin, wodurch die PWM-Signale ausgeschaltet werden. Beim nächsten PWM-Zyklus schaltet die Software die PWM-Signale automatisch wieder ein. Dadurch ergibt sich bei gleicher Frequenz eine verkürzte Einschaltdauer, was einem Betrieb an der Stromgrenze gleichkommt.
- Erst wenn das Clamping länger als die hier eingestellte Zeit aktiv ist, wird die Leistungsstufe ausgeschaltet.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp   |
|--------------------|-----------------|----------------|------------|
| 1.02400000000E-003 | 0 3.072 s       | 1.024 s        | UNSIGNED16 |

| Subindex 0x0B: clamping factor |                           |                |            |  |  |
|--------------------------------|---------------------------|----------------|------------|--|--|
| Ab Version EMDAGxxxxxxx        | Ab Version EMDAGxxxxxxx1x |                |            |  |  |
| Skalierungsfaktor              | Einstellbereich           | Voreinstellung | Datentyp   |  |  |
| 3.051757812500E-005            | 0 1                       | 0.780029       | UNSIGNED16 |  |  |

### Subindex 0x0C: clamping config

Auswahl, bei welcher Regelungsart das Clamping aktiv sein soll:

Bit 0: --- (Reserviert)

Bit 1: Clamping für SLVFCI aktivieren

Bit 2: Clamping für VFCI aktivieren

Bit 3: Clamping für SLVCI aktivieren

Bit 4: Clamping für VCI aktivieren

Bit 5: Clamping für SLVCS aktivieren

Bit 6: Clamping für VCS aktivieren

Bit 7: Clamping für AFC aktivieren

Bit 8 ... Bit 15: --- (Reserviert)

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0x0 0x007F      | 0x0A           | UNSIGNED16 |

### 6.2 Grundeinstellungen

\_\_\_\_\_

### 0x2900 | 0x3100 - Inverter A/B Supervision

| Sub.          | Name                         | Voreinstellung | Datentyp   |
|---------------|------------------------------|----------------|------------|
| ▶ <u>0x09</u> | communication fault reaction | 4              | UNSIGNED16 |
| ▶ <u>0x0C</u> | nonfatal fault reaction      | 5              | UNSIGNED16 |

### Subindex 0x09: communication fault reaction

Reaktion bei Kommunikationsfehler:

- 0 = Keine Fehlerreaktion
- 1 = Warnung
- 2 = Schnellhalt (entlang der Schnellhalt-Drehzahlrampe)
- 3 = --- (Reserviert)
- 4 = Normalhalt (entlang der Normalhalt-Drehzahlrampe)
- 5 = Austrudeln in den Stillstand / Fehler

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 5             | 4              | UNSIGNED16 |

#### Subindex 0x0C: nonfatal fault reaction

Reaktion bei unkritischem Fehler:

- 0 = Keine Fehlerreaktion
- 1 = Warnung
- 2 = Schnellhalt (entlang der Schnellhalt-Drehzahlrampe)
- 3 = --- (Reserviert)
- 4 = Normalhalt (entlang der Normalhalt-Drehzahlrampe)
- 5 = Austrudeln in den Stillstand / Fehler

| Skalierungsfaktor | Einstellbereich               | Voreinstellung | Datentyp   |
|-------------------|-------------------------------|----------------|------------|
| 1                 | 1 5 (ab Firmware R6.4)<br>2 5 | 5              | UNSIGNED16 |

"nonfatal fault reaction" wird bei Fehlern ausgeführt, die nicht-katastrophale Auswirkungen haben. Der Inverter kann bei einem anstehenden Fehler entweder noch eine beschränkte Zeit (erreicht durch Minimalwert bei Quick Stop Rampe von 10 rpm/s) oder normal (Warnung) weiter betrieben werden.

| Nonfatale Fehler                                                                                                                                                                                         |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| DCU                                                                                                                                                                                                      | PSU |
| motor tempsensor error<br>motor overtemperature<br>motor i2xt error<br>ambient tempsensor error (Funktion bis Firmware R6.3 verfügbar)<br>ambient overtemperature (Funktion bis Firmware R6.3 verfügbar) | _   |

### 6.2 Grundeinstellungen

\_\_\_\_\_

### 0x2901 | 0x3101 - Inverter A/B

| Sub.          | Name                     | Voreinstellung | Datentyp   |
|---------------|--------------------------|----------------|------------|
| ▶ <u>0x01</u> | itc config               | 0x00DF         | UNSIGNED16 |
| ▶ <u>0x02</u> | option config            | 0x0000         | UNSIGNED16 |
| ▶ <u>0x03</u> | warning temperature      | 95 °C          | INT16      |
| ▶ <u>0x07</u> | switching frequency      | 1              | UNSIGNED16 |
| ▶ <u>0x12</u> | ixt limitation threshold | 0              | INT32      |
| ▶ <u>0x14</u> | ixt warning threshold    | 0              | INT32      |
| ▶ <u>0×16</u> | limitation temperature   | 0 °C           | INT16      |

### Subindex 0x01: itc config

Konfiguration für Inverter-Test (Bitwert 1 = Test durchführen):

Bit 0: Initialisierung Zeitstempel

Bit 1: Kalibrierung Strom-Offset für Phasen U/V/W

Bit 2: Überprüfung auf gültige DC-Zwischenkreisspannung

Bit 3: Laden der Bootstrap-Kondensatoren

Bit 4: Kalibrierung Resolver-Phase und -Offset

Bit 5: Kalibrierung Resolver-Amplitude

Bit 6: Verbindungstest Motor (Gefahr eines Geräteschadens bei Deaktivierung)

Bit 7 ... Bit 15: reserviert

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0x0000 0x00FF   | 0x00DF         | UNSIGNED16 |

### Subindex 0x02: option config

### **MOBILE DCU**

Konfiguration (Bitwert 0 = nein, 1 = ja):

Bit 0: Fehler auslösen, wenn anderer Inverter Fehler meldet.

Bit 1 ... 2: Steuerung anderer Inverter:

- 0: Den eigenen Inverterausgang verwenden
- 1: Die Ausgänge des Velocity Controller und DC Link Controller des anderen Inverters verwenden (2 x 3-Phasenregelung)
- 2: Die Ausgänge des Modulators des anderen Inverters verwenden (6-Phasenregelung)
- 3: reserviert

Bit 3: Schaltrichtung der PWM-Signale des Inverters invertieren

Bit 4 ... Bit 15: reserviert

### **MOBILE DCU PSU**

Konfiguration (Bitwert 0 = nein, 1 = ja):

Bit 0: Fehler auslösen, wenn anderer Inverter Fehler meldet.

Bit 1 ... Bit 2: reserviert

Bit 3: Schaltrichtung der PWM-Signale des Inverters invertieren

Bit 4 ... Bit 15: reserviert

### MOBILE DCU S

Konfiguration (Bitwert 0 = nein, 1 = ja):

Bit 0 ... Bit 2: reserviert

Bit 3: Schaltrichtung der PWM-Signale des Inverters invertieren

Bit 4 ... Bit 15: reserviert

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0x0000 0x000F   | 0x0000         | UNSIGNED16 |

### 6.2 Grundeinstellungen

-----

### Subindex 0x03: warning temperature

Warnschwelle für Temperaturüberwachung des Leistungsteils

- Wird die hier eingestellte Schwelle erreicht, wird im MC-Statuswort 1 das Warnungsbit 5 gesetzt.
- Die Warnschwelle hat eine Hysterese von 5 °C.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 | 0 150 °C        | 95 °C          | INT16    |

### Subindex 0x07: switching frequency

#### Schaltfrequenz des Wechselrichters:

- 0 = 16 kHz, auto ("auto" = Anpassung der Schaltfrequenz in Abhängigkeit des Stroms und der Statorfrequenz)
- 1 = 8 kHz, auto
- 2 = 4 kHz, auto
- 3 = 16 kHz, fest
- 4 = 8 kHz, fest
- 5 = 4 kHz, fest
- 6 = 2 kHz, fest

7 = 16 kHz, fest, VAC (für Applikation "Steckdose" - mit einem höheren Dauerstrom aber geringerer Überlastfähigkeit)

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 7             | 1              | UNSIGNED16 |

#### Subindex 0x12: ixt limitation threshold

Schwelle zur Begrenzung der ixt-Auslastung des Leistungsteils

- Ab der Schwelle bis zum Maximalwert wird der Ausgangsstrom auf 0 reduziert.
- Bei Wert 0 ist die Begrenzung deaktiviert.

| Skalierungsfaktor   | Einstellbereich | Voreinstellung | Datentyp |
|---------------------|-----------------|----------------|----------|
| 2.980232238770E-008 | 0 1.964999      | 0              | INT32    |

### Subindex 0x14: ixt warning threshold

Warnschwelle für die ixt-Auslastung des Leistungsteils.

• Bei Wert 0 ist die Warnung deaktiviert.

| Skalierungsfaktor   | Einstellbereich | Voreinstellung | Datentyp |
|---------------------|-----------------|----------------|----------|
| 1.862645149231E-009 | 0 2.000000      | 0              | INT32    |

### Subindex 0x16: limitation temperature

Begrenzung der Temperatur des Leistungsteils

- Ab der Schwelle bis zum Maximalwert wird der Ausgangsstrom auf 0 reduziert.
- Bei Wert 0 ist die Begrenzung deaktiviert.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 | 0 150 °C        | 0 °C           | INT16    |

6.3 Precharge-Funktion

-----

### 6.3 Precharge-Funktion

Der MOBILE-Inverter verfügt über eine Precharge-Funktion zum Vorladen der internen DC-Zwischenkreiskondensatoren. Die Precharge-Funktion wird verwendet, wenn keine externe Vorladefunktion (z. B. BMS - Batteriemanagementsystem) vorhanden ist.

### Voraussetzungen

- Der Abdeckungssensor ist sauber und frei von Staub und Schmutz.
  - Abhängig vom Einbauort des Geräts und der möglichen Verschmutzung, muss der Abdeckungssensor für einen störungsfreien Betrieb regelmäßig gereinigt werden.
- · Die Abdeckung des Geräts ist korrekt montiert.
- Die Überwachung auf geöffnete MOBILE-Abdeckung ist aktiviert.
- Die Steueranschlüsse (KL15, KL30, KL31, CAN, etc.) sind korrekt verdrahtet.
- Es steht kein Fehler an.



### Hinweis!

Die MOBILE DCU- und PSU-Geräte verfügen über eine intelligente HV-InterLock-Funktionalität. Diese löst aus, wenn die zuvor genannten Voraussetzungen nicht erfüllt sind.

- Weitere Informationen zur HV-InterLock-Funktionalität enthält das Gerätehandbuch.
- Beim MOBLE DCU S ist die HV-InterLock-Funktionalität nicht verfügbar.

### **Erforderliche Parametereinstellungen**

Der DC-Zwischenkreis kann mittels eines 2-Punkt-Reglers vorgeladen werden. Damit diese Precharge-Funktion aktiviert wird, müssen die folgenden zwei Parameter korrekt konfiguriert und die Einstellungen im Parametersatz gespeichert sein:

- 1. Parameter 0x2730:0x05 "Plug Cover: config":
  - In diesem Parameter den Wert "1" einstellen, um die Überwachung auf geöffnete MOBILE-Abdeckung zu aktivieren.
- 2. Parameter <u>0x2732:0x0A</u> (MC) "DC Link: voltage precharge demand": Ab Firmware R6.3: Parameter 0x4010:0x05 (APPC)
  - In diesem Parameter den Sollwert für das Vorladen des DC-Zwischenkreises einstellen.
  - Das Vorladen wird aktiv, wenn die Zwischenkreisspannung kleiner dem eingestellten Sollwert ist. Ist die Zwischenkreisspannung bereits grösser als der eingestellte Sollwert, dann wird das Vorladen nicht gestartet.
  - Weitere Details siehe folgende Parameterbeschreibung zu <u>0x2732:0x0A</u> (MC).
     Ab Firmware R6.3: Parameter <u>0x4010:0x05</u> (APPC)

### 6.3.1 Vorladung über Public CAN

Diese Funktion ist ab Firmware R6.3 verfügbar.

Der Sollwert für das Vorladen des DC-Zwischenkreises kann auch zyklisch über Public CAN vorgegeben werden. Wenn 0x00 oder 0xFF empfangen wird oder ein RxMsgTimeout anliegt, wird der gespeicherte Wert von "voltagePrechargeDemand" <a href="https://ox4010:0x05">ox4010:0x05</a> verwendet.

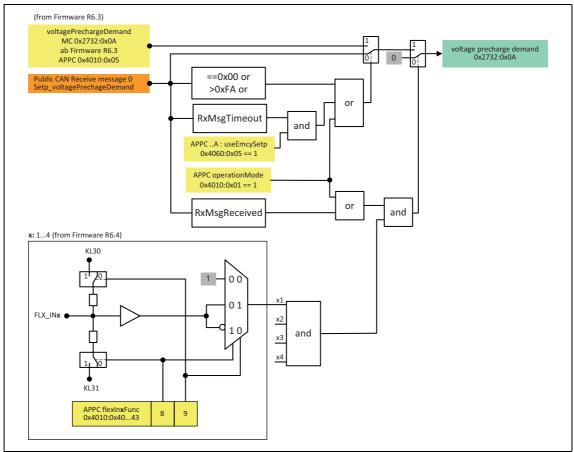
Siehe Kapitel "Public CAN receive messages" > Status der übergeordneten Steuerung

### 6.3 Precharge-Funktion

-----

### 6.3.2 Vorladung über FLX\_INx

Diese Funktion ist ab Firmware R6.4 verfügbar.


Die Vorladung des Zwischenkreises wird über digitale Eingänge aktiviert.

- Folgende Einstellungen für FlexIn[x]Func werden für die Precharge-Funktion verwendet:
  - 8: Freigabe Vorladung Zwischenkreis (High-aktiv)
  - 9: Freigabe Vorladung Zwischenkreis (Low-aktiv)

Siehe Einstellmöglichkeiten der Eingänge. ( 50)

Sind mehrere FlexIn[x]Func mit den Funktionen 8 oder 9 konfiguriert, muss an allen entsprechenden digitalen Eingängen der richtige Pegel anliegen, um die Vorladung zu aktivieren.

Wenn keine FlexIn[x]Func zur Aktivierung der Precharge-Funktion konfiguriert ist, verwendet das Gerät den Standardsollwert <u>0x4010:0x05</u> (APPC) - "voltagePrechargeDemand" oder den in Public CAN angegebenen Sollwert. ▶ <u>Status der übergeordneten Steuerung</u>



[6-1] Signalfluss der Precharge-Funktion

### 6.3 Precharge-Funktion

-----

### 0x2730 - Plug Cover

| Subindex 0 | x05: config |
|------------|-------------|
|------------|-------------|

Überwachung auf geöffnete MOBILE-Abdeckung:

0 = deaktiviert

1 = aktiviert

Hinweis: Die Überwachung ist bei MOBILE DCU S nicht vorhanden.

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 1             | 1              | UNSIGNED16 |

#### 0x2732 - DC Link

### Subindex 0x0A: voltage precharge demand

#### Die Funktion ist bis Firmware R6.2 verfügbar.

Sollwert für das Vorladen des DC-Zwischenkreises

- Bei den Geräten EMDxG1xxxxxx0x und EMDxG2xxxxxxx0x ist der Sollwert bis max. 300 V einstellbar.
- Der DC-Zwischenkreis kann mittels eines 2-Punkt-Reglers vorgeladen werden. Das Vorladen wird aktiv, wenn die Zwischenkreisspannung kleiner dem hier eingestellten Wert ist. Ist die Zwischenkreisspannung bereits grösser als der hier eingestellte Wert, dann wird das Vorladen nicht gestartet.
- Einschaltschwelle des 2-Punkt-Reglers = eingestellter Sollwert 5 V.
- Ausschaltschwelle des 2-Punkt-Reglers = eingestellter Sollwert + 5 V.
- Bei Einstellung "0" ist das Vorladen des DC-Zwischenkreises deaktiviert.

Hinweis: Die Abdeckung muss geschlossen sein und die Überwachung des Abdeckungssensors muss aktiviert sein.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 | 0 850 V         | 0 V            | INT16    |

### 0x4010 - APPC Device

### Subindex 0x05: voltagePrechargeDemand

### Die Funktion ist ab Firmware R6.3 verfügbar.

Sollwert für das Vorladen des DC-Zwischenkreises

- Bei den Geräten EMDxG1xxxxxx0x und EMDxG2xxxxxx0x ist der Sollwert bis max. 300 V einstellbar.
- Der DC-Zwischenkreis kann mittels eines 2-Punkt-Reglers vorgeladen werden. Das Vorladen wird aktiv, wenn die Zwischenkreisspannung kleiner dem hier eingestellten Wert ist. Ist die Zwischenkreisspannung bereits grösser als der hier eingestellte Wert, dann wird das Vorladen nicht gestartet.
- Einschaltschwelle des 2-Punkt-Reglers = eingestellter Sollwert 5 V.
- Ausschaltschwelle des 2-Punkt-Reglers = eingestellter Sollwert + 5 V.
- Bei Einstellung "0" ist das Vorladen des DC-Zwischenkreises deaktiviert.

Hinweis: Die Abdeckung muss geschlossen sein und die Überwachung des Abdeckungssensors muss aktiviert sein.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 | 0 850 V         | 0 V            | INT16    |

91

### 6.3 Precharge-Funktion

-----

### **Precharge starten**

Wenn alle Voraussetzungen erfüllt sind, startet die Vorladung nach dem Einschalten des MOBILE-Geräts.

Ablauf der Vorladung:

- 1. MOBILE-Gerät einschalten (Kl 15).
- 2. Die DC-Zwischenkreisspannung wird hochgefahren, bis der konfigurierte Vorladewert erreicht ist
  - Durch die LED am MOBILE-Gerät und in der CAN-Nachricht wird der Status angezeigt.
     Siehe Kapitel "Public CAN transmit messages" ➤ Gerätestatus des MOBILE (□ 179)
- 3. Die Hauptschütze der HV-DC-Batterie können geschlossen werden.



### Hinweis!

Es ist unerheblich, wenn die Vorladespannung etwas höher ist als die DC-Zwischenkreisspannung.

### Beispiel für Vorladung bei DCU V010:

Vorladung der 240  $\mu$ F auf 800 V dauert ca. 8 s

- → Energieinhalt beträgt E = 1/2 \* C \* U<sup>2</sup> = 76.8 J
- → Leistung des Vorladenetzeils beträgt ca. 9.6 W

Nach 20 s schützt sich das Vorladenetzteil gegen Überhitzung und geht in einen Pulsbetrieb (1 s Vorladen, 250 ms abkühlen).

### **Precharge-Status**

Gelbe LED am Gerät:

| LED         | Gerätestatus                | Anmerkungen                                                                                                        |
|-------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------|
| 0           | DC-Zwischenkreis geladen    | U <sub>DC</sub> > 50 V                                                                                             |
| ( <u>()</u> | Vorladung aktiv             | Blinkt langsam                                                                                                     |
| ((())       | Abdeckung nicht geschlossen | Blinkt schnell (Voraussetzung: In <u>0x2730:0x05</u> ist die Überwachung auf geöffnete MOBILE-Abdeckung aktiviert) |

- C LED aus
- LED blinkend im 0.4-s-Takt
- (C)) LED blinkend im 0.2-s-Takt

Wenn beim Einschalten des Geräts "dc link voltage min" und "precharge demand" unter der aktuellen Zwischenkreisspannung liegen, wird das Statusbit "Precharged" direkt auf 1 initialisiert.

### Zusätzliche Funktion ab Firmware R6.4 verfügbar:

Das Statusbit "Precharged" wird auf 1 gesetzt, wenn "voltagePrechargeDemand" > 0 V ist und die Zwischenkreisspannung über "voltagePrechargeDemand" liegt.

Das Statusbit "Precharged" wird auf 0 zurückgesetzt, wenn "voltagePrechargeDemand" geändert wird und der neue Wert unter der aktuellen Zwischenkreisspannung plus 10 V (Hysterese) liegt.

CAN-ID 0x18FF00yy: Gerätestatus des MOBILE (1179)

### 6.4 Discharge-Funktion

-----

### 6.4 Discharge-Funktion

### Diese Funktion ist ab Firmware R6.4 verfügbar.

Um eine deutlich schnellere Entladung zu erreichen, kann der Zwischenkreis mit den angeschlossenen Lasten entladen werden. Nur mit Motoren ist die Entladung bis auf eine Zwischenkreisspannung von 0 V möglich. Mit der PSU kann nur bis zu einer unteren Spannungsgrenze (siehe Gerätehandbuch) aktiv entladen werden. Darunter tragen nur noch die Schaltverluste zur Entladung bei.

### Änderungen im Vergleich zum Normalbetrieb bei kommandierter Zwischenkreisentladung

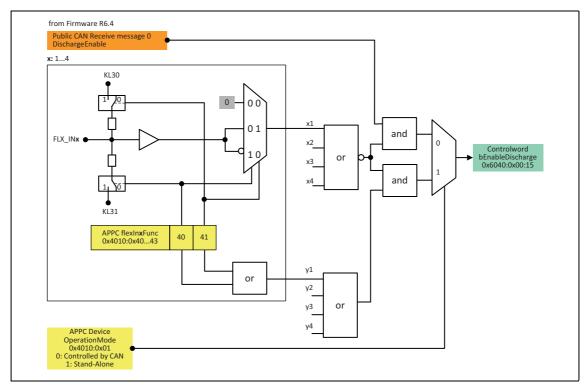
- Eine aktive Vorladung wird unterbrochen.
- Der Precharged Status wird auf 0 gesetzt.
- Die untere Grenze des Zwischenkreisreglers wird auf 0 V gesetzt.
- Das Unterschreiten der minimalen Zwischenkreisspannung führt zu keinem Fehler.
- Das Unterschreiten der minimalen Ausgangsspannung führt zu keinem Fehler (PSU).

Dadurch können die Lasten weiter betrieben werden, bis die Zwischenkreisspannung zur gewünschten Entladespannung abgesunken ist. Für den korrekten Abschluss des Entladevorgangs muss erst die DCU bzw. die PSU abgeschaltet werden, bevor auch das Entladekommando deaktiviert werden kann.

### Möglichkeiten, um die Discharge-Funktion zu aktivieren

- 1. Das Signal "DischargeEnable" (<u>Status der übergeordneten Steuerung</u>) wird über Public CAN empfangen.
- 2. Folgende Einstellungen für FlexIn[x]Func werden für die Discharge-Funktion verwendet:
  - 40: Freigabe Entladung Zwischenkreis (High-aktiv) (if all FlexInxFunc! = 40, 41 and Stand-Alone: Discharge is deactivated)
  - 41: Freigabe Entladung Zwischenkreis (Low-aktiv) (if all FlexInxFunc! = 40, 41 and Stand-Alone: Discharge is deactivated)

Siehe Einstellmöglichkeiten der Eingänge. ( 50)


Für alle FlexIn[x]Func, die mit den Funktionen 40 oder 41 konfiguriert sind, muss an den entsprechenden Eingängen der richtige Pegel anliegen, damit das Signal "DischargeEnable" vom Public CAN an den Private CAN weitergegeben wird. Andernfalls wird das Bit "bEnableDischarge" = 0 gesetzt.

Ist OperationMode = 1 (Stand-Alone-Betrieb) und ist keine FlexIn[x]Func auf die Funktion 40 oder 41 eingestellt, wird das Bit "bEnableDischarge" = 0 gesetzt.

Die auf Private CAN empfangenen Signale "bPrecharged" und "bDischarged" werden über Public CAN in der Nachricht "DcLinkChargeState" gesendet. ▶ Gerätestatus des MOBILE (☐ 179)

### 6.4 Discharge-Funktion

.\_\_\_\_\_



Signalfluss der Discharge-Funktion

## 6.5 Motor/Motorrückführung

\_\_\_\_\_

### 6.5 Motor/Motorrückführung

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                      | MOBILE |     |         |                 |
|---------------|---------------------------|--------|-----|---------|-----------------|
|               |                           | DCU    | PSU | DCU PSU | DCU S           |
| <u>0x2910</u> | Motor INV A               | •      |     |         | •               |
| <u>0x3110</u> | Motor INV B               | •      |     | •       |                 |
| <u>0x2820</u> | Motor Feedback Plug INV A | •      |     |         | ● <sup>1)</sup> |
| <u>0x3020</u> | Motor Feedback Plug INV B | •      |     | •       |                 |
| 0x2822        | Resolver INV A            | •      |     |         |                 |
| <u>0x3022</u> | Resolver INV B            | •      |     | •       |                 |

<sup>1)</sup> Der Temperatursensor wird an X1 angeschlossen

### 6.5.1 Motorparameter

### 0x2910 | 0x3110 - Motor A/B

| Sub.          | Name                         | Voreinstellung | Datentyp   |
|---------------|------------------------------|----------------|------------|
| ▶ <u>0x01</u> | control mode                 | 0x0001         | UNSIGNED16 |
| ▶ <u>0x02</u> | pole pairs                   | 1              | UNSIGNED16 |
| ▶ <u>0x03</u> | temperature warning limit    | 75 °C          | INT16      |
| ▶ <u>0x04</u> | temperature error limit      | 85 °C          | INT16      |
| ▶ <u>0x06</u> | stator frequency error limit | 500 Hz         | INT32      |
| ▶ <u>0x07</u> | feedback config              | 0x0000         | UNSIGNED16 |
| ▶ <u>0x08</u> | direction                    | 0              | UNSIGNED16 |
| ▶ <u>0x09</u> | temperature limitation limit | 0 °C           | INT16      |
| ▶ <u>0x13</u> | stall detection cos phi min  | 0              | INT16      |
| ▶ <u>0x14</u> | stall detection current min  | 2 A            | REAL32     |

| Subindex 0x01: control mod                                                                                               | Subindex 0x01: control mode |                |            |  |  |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|------------|--|--|
| Bit-codierte Einstellung des Regelungsverfahrens zur Regelung bzw. Steuerung des Motors  • Regelungsverfahren einstellen |                             |                |            |  |  |
| Skalierungsfaktor                                                                                                        | Einstellbereich             | Voreinstellung | Datentyp   |  |  |
| 1                                                                                                                        | 0x0001 0xFFFF               | 0x0001         | UNSIGNED16 |  |  |

| Subindex 0x02: pole pa | irs             |                |            |
|------------------------|-----------------|----------------|------------|
| Polpaarzahl des Motors |                 |                |            |
| Skalierungsfaktor      | Einstellbereich | Voreinstellung | Datentyp   |
| 1                      | 1100            | 1              | UNSIGNED16 |

### Subindex 0x03: temperature warning limit

Warnschwelle für Temperaturüberwachung des Motors

- Wird die hier eingestellte Schwelle erreicht, wird im MC-Statuswort 1 das Warnungsbit 15 gesetzt.
- Die Warnschwelle hat eine Hysterese von 5 °C.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 | 0 350 °C        | 75 °C          | INT16    |

### 6.5 Motor/Motorrückführung

#### Subindex 0x04: temperature error limit

Fehlerschwelle für Temperaturüberwachung des Motors

- Wird die hier eingestellte Schwelle erreicht, wird im MC-Statuswort 1 das Fehlerbit 16 gesetzt.
- Die Fehlerschwelle hat eine Hysterese von 5 °C.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 | 0 350 °C        | 85 °C          | INT16    |

### Subindex 0x06: stator frequency error limit

Fehlerschwelle für Überwachung der Motor-Stator-Frequenz

- Wird die hier eingestellte Schwelle erreicht, wird im MC-Statuswort 1 das Fehlerbit 17 gesetzt.
- Der obere Grenzwert ist abhängig von der Gerätevariante (bei Standard-Geräten = 599 Hz).

| Skalierungsfaktor   | Einstellbereich | Voreinstellung | Datentyp |
|---------------------|-----------------|----------------|----------|
| 2.441406250000E-004 | 0 2000 Hz       | 500 Hz         | INT32    |

### Subindex 0x07: feedback config

### Bit-codierte Konfiguration der Positions- und Temperaturrückführung

▶ Positions- und Temperaturrückführung konfigurieren

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0x0000 0x0FFF   | 0x0000         | UNSIGNED16 |

### Subindex 0x08: direction

### Motor-Drehrichtung:

0 = nicht invertiert

1 = invertiert

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 1             | 0              | UNSIGNED16 |

### Subindex 0x09: temperature limitation limit

Schwelle für Motortemperaturbegrenzung

- Ab der Schwelle bis zum Maximalwert wird der Ausgangsstrom auf 0 reduziert.
- Bei Wert 0 ist die Begrenzung deaktiviert.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 | 0 350 °C        | 0 °C           | INT16    |

### Subindex 0x13: stall detection cos phi min

Minimaler Leistungsfaktor für die Stillstandserkennung

• Bei Wert 0 ist die Funktion deaktiviert.

| Skalierungsfaktor   | Einstellbereich | Voreinstellung | Datentyp |
|---------------------|-----------------|----------------|----------|
| 6.103515625000E-005 | 0 1             | 0              | INT16    |

| Subindex 0x14: stall detection current min |                 |                |          |  |
|--------------------------------------------|-----------------|----------------|----------|--|
| Skalierungsfaktor                          | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                          | 0 350 A         | 2 A            | REAL32   |  |

6.5 Motor/Motorrückführung

\_\_\_\_\_\_

### 6.5.2 Lagegeber und Temperatursensor

Die Konfiguration der Positions- und Temperaturrückführung erfolgt über den Parameter "feedback config".



### Hinweis!

Die Konfiguration der Positions- und Temperaturrückführung ist nur möglich, wenn der Inverter sich im Zustand "Not ready to switch on" oder "Switch on disabled" befindet (Inverter ist <u>nicht</u> eingeschaltet).

• Nach dem Neustart des Geräts bis zur erstmaligen Reglerfreigabe befindet sich der Inverter im Zustand "Switch on disabled".

### 0x2820 | 0x3020 - Motor Feedback Plug A/B

| Sub.          | Name                    | Voreinstellung | Datentyp   |
|---------------|-------------------------|----------------|------------|
| ▶ <u>0x04</u> | temperature sensor type | 0              | UNSIGNED16 |
| ▶ <u>0x05</u> | position device type    | 0              | UNSIGNED16 |

### Subindex 0x04: temperature sensor type

- 0 = Kein Temperatursensor angeschlossen
- 1 = KTY83-110
- 2 = KTY84-130
- 3 = PT1000
- 4 = Ein Thermokontakt (Öffner) nach DIN 44080 oder bis zu drei Kaltleiter nach DIN 44081 in Reihenschaltung

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 4             | 0              | UNSIGNED16 |

### Subindex 0x05: position device type

- 0 = Kein Lagegeber angeschlossen
- 1 = Resolver
- 2 = --- (Reserviert)
- 3 = --- (Reserviert)

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 03              | 0              | UNSIGNED16 |

## 6.5 Motor/Motorrückführung

| feedback confi | feedback config |       |                                                                          |                                                     |  |  |
|----------------|-----------------|-------|--------------------------------------------------------------------------|-----------------------------------------------------|--|--|
| INV A          | INV B           | Bit   | Info                                                                     |                                                     |  |  |
| 0x2910:0x07    | 0x3110:0x07     | 0 3   | Geber-Anbaurichtung:                                                     |                                                     |  |  |
|                |                 |       | 0                                                                        | Anbaurichtung nicht invertiert                      |  |  |
|                |                 |       | 1                                                                        | Anbaurichtung invertiert                            |  |  |
|                |                 |       | 2 15                                                                     | Anbaurichtung nicht invertiert                      |  |  |
|                |                 | 4 7   | Zu verwende                                                              | ende Position:                                      |  |  |
|                |                 |       | 0                                                                        | Normale Position verwenden                          |  |  |
|                |                 |       | 1                                                                        | Position des Gebers des anderen Inverters verwenden |  |  |
|                |                 |       | 2                                                                        | Keine Position verwenden                            |  |  |
|                |                 |       | 3 15                                                                     | Normale Position verwenden                          |  |  |
|                |                 | 8 11  | Zu verwende                                                              | ende Temperatur:                                    |  |  |
|                |                 |       | 0                                                                        | Normale Temperatur verwenden                        |  |  |
|                |                 |       | Temperatur des Motortemperaturgebers des anderen Inver<br>ters verwenden |                                                     |  |  |
|                |                 |       | 2 Keine Temperatur verwenden                                             |                                                     |  |  |
|                |                 |       | 3 15 Normale Temperatur verwenden                                        |                                                     |  |  |
|                |                 | 12 15 | Reserviert                                                               |                                                     |  |  |

### 6.5.3 Resolver

### 0x2822 | 0x3022 - Resolver A/B

| Sub.          | Name                    | Voreinstellung | Datentyp   |
|---------------|-------------------------|----------------|------------|
| ▶ <u>0x03</u> | position offset         | 0 rad          | INT16      |
| ▶ <u>0x05</u> | pole pairs ratio        | 1              | UNSIGNED16 |
| ▶ <u>0x12</u> | frequency filter factor | 0.019996       | INT32      |
| ▶ <u>0x13</u> | dynamic offset factor   | 5              | INT16      |

| Subindex 0x03: position offset                                               |                        |                |          |  |
|------------------------------------------------------------------------------|------------------------|----------------|----------|--|
| Elektrischer Motor-Winkeloffset zur Korrektur der elektrischen Motorposition |                        |                |          |  |
| Skalierungsfaktor                                                            | Einstellbereich        | Voreinstellung | Datentyp |  |
| 9.587379920000E-005                                                          | -3.141592 3.141496 rad | 0 rad          | INT16    |  |

| Subindex 0x05: pole pairs ratio                           |                                                                                                                                       |   |            |  |  |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---|------------|--|--|
|                                                           | Polpaarzahl-Verhältnis Motor/Resolver • Hier ist die Polpaarzahl des Motors geteilt durch die Polpaarzahl des Resolvers einzustellen. |   |            |  |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp |                                                                                                                                       |   |            |  |  |
| 1                                                         | 1 32                                                                                                                                  | 1 | UNSIGNED16 |  |  |

| Subindex 0x12: frequency filter factor             |                                                                       |                |          |  |  |
|----------------------------------------------------|-----------------------------------------------------------------------|----------------|----------|--|--|
| IIR-Filter 1. Ordnung: Faktor<br>• mit Ts = 128 μs | IIR-Filter 1. Ordnung: Faktor = Ts / $\tau$<br>• mit Ts = 128 $\mu$ s |                |          |  |  |
| Skalierungsfaktor                                  | Einstellbereich                                                       | Voreinstellung | Datentyp |  |  |
| 7.629394531250E-006                                | 0 0.5                                                                 | 0.019996       | INT32    |  |  |

### 6.5 Motor/Motorrückführung

-----

### Subindex 0x13: dynamic offset factor

Drehzahlabhängige Winkel-Korrektur für die Kompensation des Filters der Sinus- und Cosinussignale

- Einstellung "5" entspricht 5 \* 128 μs = 640 μs
- Über diesen Parameter können zusätzliche drehzahlabhängige Winkelfehler kompensiert werden (z. B. verursacht durch den Resolver).

| Skalierungsfaktor   | Einstellbereich | Voreinstellung | Datentyp |
|---------------------|-----------------|----------------|----------|
| 3.125000000000E-002 | 0 10            | 5              | INT16    |

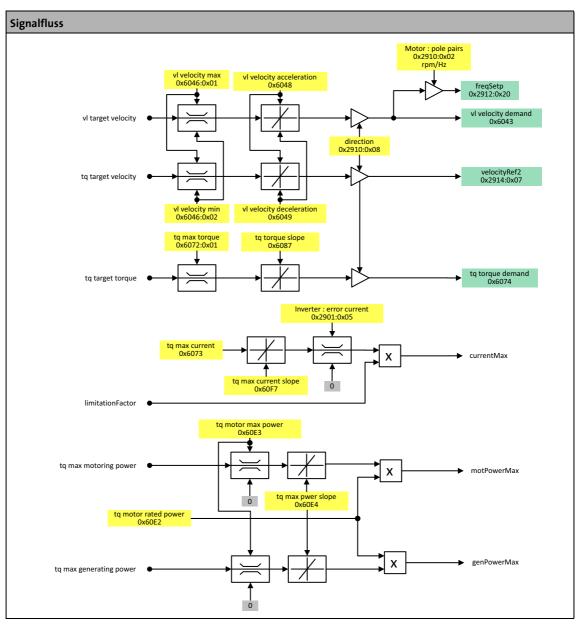
### 6.5.4 Motortemperaturüberwachung

Für eine Überwachung der Motortemperatur sind folgende Parameter einzustellen:

| Parameter   | Parameter   |                                 |                                                                                                                                |  |  |  |
|-------------|-------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| INV A       | INV B       | Name                            | Info                                                                                                                           |  |  |  |
| 0x2820:0x04 | 0x3020:0x04 | temperature sensor type         | Verwendeter Temperatursensor                                                                                                   |  |  |  |
| 0x2910:0x03 | 0x3110:0x03 | temperature warning limit       | Warnschwelle für Temperaturüberwachung                                                                                         |  |  |  |
| 0x2910:0x04 | 0x3110:0x04 | temperature error<br>limit      | Fehlerschwelle für Temperaturüberwachung                                                                                       |  |  |  |
| 0x2910:0x07 | 0x3110:0x07 | feedback config                 | Bit-codierte Konfiguration der Positions- und Temperatur-<br>rückführung  ▶ Positions- und Temperaturrückführung konfigurieren |  |  |  |
| 0x2910:0x09 | 0x3110:0x09 | temperature<br>limitation limit | Schwelle für Motortemperaturbegrenzung                                                                                         |  |  |  |

### 6.6 Drive Profile Generator

------


### 6.6 Drive Profile Generator

0x6060 | 0x6860 - Drive Profile Inverter A/B modes of operation

Auswahl des Betriebsmodus:

- -5 = Generator Mode
- 0 = kein Betriebsmodus (Stillstand)
- 2 = Velocity Mode
- 4 = Profile Torque Mode
- 8 = Cyclic Synchronous Position Mode

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp |
|-------------------|-----------------|----------------|----------|
| 1                 | -5 8            | 2              | INT16    |



[6-2] Signalfluss Drive Profile Generator (vereinfachte Darstellung)

6.6 Drive Profile Generator

\_\_\_\_\_\_

### 6.6.1 Velocity Mode

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                                                  | MOBILE          |  |       |   |
|---------------|-------------------------------------------------------|-----------------|--|-------|---|
|               |                                                       | DCU PSU DCU PSU |  | DCU S |   |
| <u>0x6046</u> | Drive Profile Inverter vI velocity max min INV A      | •               |  |       | • |
| <u>0x6846</u> | Drive Profile Inverter vI velocity max min INV B      | •               |  | •     |   |
| 0x6048        | Drive Profile Inverter vI velocity acceleration INV A | •               |  |       | • |
| <u>0x6848</u> | Drive Profile Inverter vI velocity acceleration INV B | •               |  | •     |   |
| 0x6049        | Drive Profile Inverter vI velocity deceleration INV A | •               |  |       | • |
| 0x6849        | Drive Profile Inverter vI velocity deceleration INV B | •               |  | •     |   |

Dieser Betriebsmodus stellt einen schnellen Drehzahlfolger zur Verfügung. Der Drehzahlsollwert setp\_Speed wird über Public CAN vorgegeben.

### 0x6046 | 0x6846 - Drive Profile Inverter A/B vI velocity max min

| Sub.          | Name | Voreinstellung       | Datentyp |
|---------------|------|----------------------|----------|
| ▶ <u>0x01</u> | max  | 3000.000000 rev/min  | INT32    |
| ▶ <u>0x02</u> | min  | -3000.000000 rev/min | INT32    |

| Subindex 0x01: max   |                        |                     |          |  |  |
|----------------------|------------------------|---------------------|----------|--|--|
| Obere Drehzahlgrenze |                        |                     |          |  |  |
| Skalierungsfaktor    | Einstellbereich        | Voreinstellung      | Datentyp |  |  |
| 6.103515625000E-005  | -131072 131072 rev/min | 3000.000000 rev/min | INT32    |  |  |

| Subindex 0x02: min    |                        |                      |          |  |
|-----------------------|------------------------|----------------------|----------|--|
| Untere Drehzahlgrenze |                        |                      |          |  |
| Skalierungsfaktor     | Einstellbereich        | Voreinstellung       | Datentyp |  |
| 6.103515625000E-005   | -131072 131072 rev/min | -3000.000000 rev/min | INT32    |  |

### 0x6048 | 0x6848 - Drive Profile Inverter A/B vI velocity acceleration

### Beschleunigung

• Bei Einstellung "0" ist keine Beschleunigungsrampe aktiv und es wird direkt der Soll-Geschwindigkeit in positiver Richtung gefolgt.

| Skalierungsfaktor  | Einstellbereich         | Voreinstellung  | Datentyp |
|--------------------|-------------------------|-----------------|----------|
| 2.50000000000E-001 | 0 536870912 rev/(min*s) | 500 rev/(min*s) | INT32    |

### 6.6 Drive Profile Generator

-----

### 0x6049 | 0x6849 - Drive Profile Inverter A/B vI velocity deceleration

Verzögerung

• Bei Einstellung "0" ist keine Verzögerungsrampe aktiv und es wird direkt der Soll-Geschwindigkeit in negativer Richtung gefolgt.

| Skalierungsfaktor  | Einstellbereich          | Voreinstellung   | Datentyp |
|--------------------|--------------------------|------------------|----------|
| 2.50000000000E-001 | -536870912 0 rev/(min*s) | -500 rev/(min*s) | INT32    |

### 6.6.2 Profile Torque Mode

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                                                 | MOBILE |     |         |       |
|---------------|------------------------------------------------------|--------|-----|---------|-------|
|               |                                                      | DCU    | PSU | DCU PSU | DCU S |
| 0x6072        | Drive Profile Inverter tq max torque INV A           | •      |     |         | •     |
| 0x6872        | Drive Profile Inverter tq max torque INV B           | •      |     | •       |       |
| <u>0x6073</u> | Drive Profile Inverter tq max current INV A          | •      |     |         | •     |
| <u>0x6873</u> | Drive Profile Inverter tq max current INV B          | •      |     | •       |       |
| 0x6076        | Drive Profile Inverter tq motor rated torque INV A   | •      |     |         | •     |
| <u>0x6876</u> | Drive Profile Inverter tq motor rated torque INV B   | •      |     | •       |       |
| 0x6085        | Drive Profile Inverter quick stop deceleration INV A | •      |     |         | •     |
| 0x6087        | Drive Profile Inverter tq torque slope INV A         | •      |     |         | •     |
| <u>0x6887</u> | Drive Profile Inverter tq torque slope INV B         | •      |     | •       |       |
| 0x60F6        | Drive Profile Inverter tq target velocity INV A      | •      |     |         | •     |
| 0x68F6        | Drive Profile Inverter tq target velocity INV B      | •      |     | •       |       |
| 0x60F7        | Drive Profile Inverter tq max current slope INV A    | •      |     |         | •     |
| <u>0x68F7</u> | Drive Profile Inverter tq max current slope INV B    | •      |     | •       |       |

Dieser Betriebsmodus stellt einen schnellen Drehmomentfolger mit Drehzahlklammerung zur Verfügung.

- Der Drehmomentsollwert setp\_Torque wird über Public CAN vorgegeben.
- Der über <u>Public CAN</u> vorgegebene Drehzahlsollwert setp\_Speed definiert in diesem Modus die obere Drehzahlbegrenzung für Drehzahlklammerung. Die untere Drehzahlbegrenzung ist in <u>0x60F6</u> (bzw. <u>0x68F6</u> für Motor B) einstellbar.

### 0x6072 | 0x6872 - Drive Profile Inverter A/B tq max torque

**Maximales Drehmoment** 

• 100 % = Motor-Bemessungsdrehmoment (0x6076 bzw. 0x6876 für Motor B)

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp |
|-------------------|-----------------|----------------|----------|
| 0.1               | 0 3276.700000 % | 150 %          | INT16    |

### 6.6 Drive Profile Generator

-----

### 0x6073 | 0x6873 - Drive Profile Inverter A/B tq max current

**Maximaler Strom** 

| Skalierungsfaktor   | Einstellbereich | Voreinstellung | Datentyp |
|---------------------|-----------------|----------------|----------|
| 1.562500000000E-002 | 0 350 A         | 100 A          | INT16    |

### 0x6076 | 0x6876 - Drive Profile Inverter A/B tq motor rated torque

Motor-Bemessungsdrehmoment

| Skalierungsfaktor | Einstellbereich  | Voreinstellung | Datentyp   |
|-------------------|------------------|----------------|------------|
| 0.001             | 0.001 4294967 Nm | 100 Nm         | UNSIGNED32 |

### 0x6085 | 0x6885 - Drive Profile Inverter A/B quick stop deceleration

| Skalierungsfaktor  | Einstellbereich          | Voreinstellung    | Datentyp |
|--------------------|--------------------------|-------------------|----------|
| 2.50000000000E-001 | -53687091210 rev/(min*s) | -1000 rev/(min*s) | INT32    |

### 0x6087 | 0x6887 - Drive Profile Inverter A/B tq torque slope

Rampe für die Änderung des Drehmoments

- In [%/s] bezogen auf das Motor-Bemessungsdrehmoment (0x6076 bzw. 0x6876 für Motor B)
- Bei Einstellung "0" ist keine Rampe aktiv und es wird direkt dem Soll-Drehmoment gefolgt.

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 0.1               | 0 429496730 %/s | 500 %/s        | UNSIGNED32 |

### 0x60F6 | 0x68F6 - Drive Profile Inverter A/B tq target velocity

Untere Drehzahlbegrenzung für Drehzahlklammerung

| Skalierungsfaktor   | Einstellbereich        | Voreinstellung | Datentyp |
|---------------------|------------------------|----------------|----------|
| 6.103515625000E-005 | -131072 131072 rev/min | 0 rev/min      | INT32    |

### 0x60F7 | 0x68F7 - Drive Profile Inverter A/B tq max current slope

Rampe für die Änderung des Stroms

• Bei Einstellung "0" ist keine Rampe aktiv und es wird direkt dem Soll-Strom gefolgt.

| Skalierungsfaktor  | Einstellbereich  | Voreinstellung | Datentyp   |
|--------------------|------------------|----------------|------------|
| 2.50000000000E-001 | 0 1073741824 A/s | 25 A/s         | UNSIGNED32 |

6.6 Drive Profile Generator

\_\_\_\_\_

### 6.6.3 Generator Mode

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt | Name           | MOBILE |     |         |       |
|--------|----------------|--------|-----|---------|-------|
|        |                | DCU    | PSU | DCU PSU | DCU S |
|        | Generator Mode | •      |     | •       | •     |

Der Generator Mode funktioniert identisch zu dem <u>Profile Torque Mode</u>. Nur der Stromlimiter im jeweiligen Reglermodus verhält sich unterschiedlich.

Im Generator Mode wirkt der Korrekturstrom des Zwischenkreisreglers additiv auf den Drehmoment-bildenden Q-Sollstrom. Damit ist auch eine Korrektur über 0 hinweg möglich. In allen anderen Modi wirkt der Zwischenkreisregler nur limitierend und kann den Drehmoment-bildenden Q-Sollstrom nur bis maximal zurück auf 0 limitieren.



### Hinweis!

Im Generator Mode muss die Überwachung auf geöffnete MOBILE-Abdeckung aktiv sein. Die Aktivierung erfolgt über den Parameter <a href="https://oxo52.2730:0x05">0x2730:0x05</a> - "Plug Cover: config".

### 6.6 Drive Profile Generator

\_\_\_\_\_\_

### 6.6.4 Cyclic Synchronous Position Mode

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                                                |     | мо  | BILE    |       |
|---------------|-----------------------------------------------------|-----|-----|---------|-------|
|               |                                                     | DCU | PSU | DCU PSU | DCU S |
| <u>0x607C</u> | Drive Profile Inverter csp home offset INV A        | •   |     |         |       |
| 0x687C        | Drive Profile Inverter csp home offset INV B        | •   |     | •       |       |
| 0x60C2        | Drive Profile Inverter csp interpolation time INV A | •   |     |         |       |
| 0x68C2        | Drive Profile Inverter csp interpolation time INV B | •   |     | •       |       |

Dieser Betriebsmodus stellt einen schnellen Positionsfolger mit Geschwindigkeits- und Drehmoment-/Vorschubkraftvorsteuerung zur Verfügung. Das abzuarbeitende Bewegungsprofil wird von der übergeordneten Steuerung vorgegeben.

### 0x607C | 0x687C - Drive Profile Inverter A/B csp home offset

Position, die bei einer Referenzsuche im Referenzpunkt bzw. beim Referenzsetzen als aktuelle Position gesetzt wird.

- Low-Word: 65535 ≡ eine Umdrehung
- High-Word: Anzahl der Umdrehungen

| Skalierungsfaktor   | Einstellbereich    | Voreinstellung | Datentyp |
|---------------------|--------------------|----------------|----------|
| 9.587379920000E-005 | -205887 205887 rad | 0 rad          | INT32    |

### 0x60C2 | 0x68C2 - Drive Profile Inverter A/B csp interpolation time

Hier ist die von der übergeordneten Steuerung verwendete Zykluszeit für die Prozessdaten-Kommunikation einzustellen.

• Voreingestellter Interpolations-Zeitintervall =  $2 * 10^{-3} s = 2 ms$ 

| Sub.          | Name         | Voreinstellung | Datentyp  |
|---------------|--------------|----------------|-----------|
| ▶ <u>0x01</u> | period value | 0x00           | UNSIGNED8 |
| ▶ <u>0x02</u> | index        | -3             | INT16     |

| Subindex 0x01: period value   |                         |                |           |
|-------------------------------|-------------------------|----------------|-----------|
| Basismultiplikator für Interp | polations-Zeitintervall |                |           |
| Skalierungsfaktor             | Einstellbereich         | Voreinstellung | Datentyp  |
| 1                             | 0x00 0xFF               | 0x00           | UNSIGNED8 |

| Subindex 0x02: index        |                 |                |          |
|-----------------------------|-----------------|----------------|----------|
| Exponent für Interpolations | -Zeitintervall  |                |          |
| Skalierungsfaktor           | Einstellbereich | Voreinstellung | Datentyp |
| 1                           | -128 63         | -3             | INT16    |

| Definition des Interpolations-Zeitintervalls                  |
|---------------------------------------------------------------|
| Interpolations-Zeitintervall[s] = period value · 10 index [s] |

### 6.7 Übersicht der Regelungsarten

------

### 6.7 Übersicht der Regelungsarten

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                     | MOBILE |     |         |       |
|---------------|--------------------------|--------|-----|---------|-------|
|               |                          | DCU    | PSU | DCU PSU | DCU S |
| <u>0x2910</u> | Motor control mode INV A | •      |     |         | •     |
| <u>0x3110</u> | Motor control mode INV B | •      |     | •       |       |

Der MOBILE unterstützt verschiedene Verfahren zur Regelung bzw. Steuerung des Motors. Die Regelungsart wird über den Parameter "control mode" ausgewählt. Voreingestellt ist die sensorlose U/f-Kennliniensteuerung für Asynchronmotoren mit linearer U/f-Kennlinie.

| control mode |             |             |                                                         |                                                                     |  |  |
|--------------|-------------|-------------|---------------------------------------------------------|---------------------------------------------------------------------|--|--|
| INV A        | INV B       | Bit         | Info                                                    |                                                                     |  |  |
| 0x2910:0x01  | 0x3110:0x01 | 0 7         | 7 Regelungsart                                          |                                                                     |  |  |
|              |             |             | 0                                                       | Ungültige Einstellung                                               |  |  |
|              |             |             | 1                                                       | SLVFCI - Sensorlose U/f-Kennliniensteuerung für<br>Asynchronmotoren |  |  |
|              |             |             | 2                                                       | Reserviert                                                          |  |  |
|              |             |             | 3                                                       | SLVCI - Sensorlose Vektorregelung für Asynchronmotoren              |  |  |
|              |             |             | 4                                                       | VCI - Vektorregelung für Asynchronmotoren                           |  |  |
|              |             |             | 5                                                       | SLVCS - Sensorlose Vektorregelung für Synchronmotoren               |  |  |
|              |             |             | 6                                                       | VCS - Vektorregelung für Synchronmotoren                            |  |  |
|              |             |             | 7 255                                                   | Reserviert                                                          |  |  |
|              |             | 8           | Beobachtungsvariante für Positionierungsgeschwindigkeit |                                                                     |  |  |
|              |             |             | 0                                                       | Grundwellenmodell                                                   |  |  |
|              |             |             | 1                                                       | Sliding Mode Observer                                               |  |  |
|              |             | 9 11        | Reserviert                                              |                                                                     |  |  |
|              |             | 12 13       | Einstellungen für SLVFCI                                |                                                                     |  |  |
|              |             |             | 0                                                       | Lineare U/f-Kennlinie                                               |  |  |
|              |             |             | 1                                                       | Quadratische U/f-Kennlinie                                          |  |  |
|              |             |             | 2                                                       | Reserviert                                                          |  |  |
|              |             |             | 3                                                       | Reserviert                                                          |  |  |
|              |             | 14          | Fangschaltung                                           |                                                                     |  |  |
|              |             |             | 0                                                       | Deaktiviert                                                         |  |  |
|              |             | 1 Aktiviert |                                                         |                                                                     |  |  |
|              |             | 15          | Einstellungen für VCS                                   |                                                                     |  |  |
|              |             |             | 0                                                       | Ohne Entkopplung von iq und id                                      |  |  |
|              |             |             | 1                                                       | Mit Entkopplung von iq und id                                       |  |  |

### 6.7 Übersicht der Regelungsarten

\_\_\_\_\_

### 6.7.1 Kombinationen Regelungsart und CiA402-Betriebsmodus

Die folgende Tabelle zeigt, welcher CiA402-Betriebsmodus mit welcher Regelungsart kombinierbar ist. Der CiA402-Betriebsmodus wird über den Parameter "modes of operation" (Objekt <u>0x6060</u> bzw. 0x6860) ausgewählt.

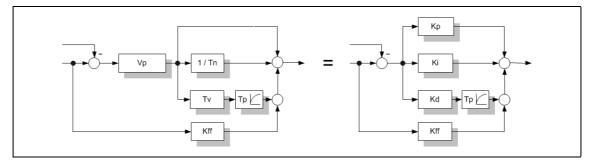
| CiA402-Betriebsmodus             | Regelungsart                    |                                                              |            |                     |            |  |  |
|----------------------------------|---------------------------------|--------------------------------------------------------------|------------|---------------------|------------|--|--|
| (Mode of operation)              | Asynchronmotor (ASM)            |                                                              |            | Synchronmotor (PSM) |            |  |  |
|                                  | ohne Geber                      |                                                              | mit Geber  | ohne Geber          | mit Geber  |  |  |
|                                  | <u>SLVFCI</u>                   | <u>SLVCI</u>                                                 | <u>VCI</u> | <u>SLVCS</u>        | <u>VCS</u> |  |  |
| <u>Velocity Mode</u>             | •                               | •                                                            | •          | •                   | •          |  |  |
| Profile Torque Mode              | -                               | •*                                                           | •          | •*                  | •          |  |  |
| Cyclic Synchronous Position Mode | -                               | -                                                            | •          | -                   | •          |  |  |
| Generator Mode                   | -                               | •                                                            | •          | •                   | •          |  |  |
|                                  | * nicht bei Drehzahlen um 0 rpn |                                                              |            |                     |            |  |  |
|                                  | Legende:                        |                                                              |            |                     |            |  |  |
|                                  | SLVFCI                          | Sensorlose U/f-Kennliniensteuerung für Asynchron-<br>motoren |            |                     |            |  |  |
|                                  | SLVCI                           | Sensorlose Vektorregelung für Asynchronmotoren               |            |                     |            |  |  |
|                                  | VCI                             | Vektorregelung für Asynchronmotoren                          |            |                     |            |  |  |
|                                  | SLVCS                           | Sensorlose Vektorregelung für Synchronmotoren                |            |                     |            |  |  |
|                                  | VCS                             | Vektorregelung für Synchronmotoren                           |            |                     |            |  |  |

### 6.7 Übersicht der Regelungsarten

-----

### 6.7.2 Kombinationen Regelungsart und Motor

| Motor                           | Regelungsart  |                                                                                        |            |              |            |  |
|---------------------------------|---------------|----------------------------------------------------------------------------------------|------------|--------------|------------|--|
|                                 | <u>SLVFCI</u> | <u>SLVCI</u>                                                                           | <u>VCI</u> | <u>SLVCS</u> | <u>VCS</u> |  |
| Asynchronmotor sensorlos        | •             | •                                                                                      |            |              |            |  |
| Asynchronmotor mit Resolver     | (●)           |                                                                                        | •          |              |            |  |
| Synchronmotor sensorlos         |               |                                                                                        |            | •            |            |  |
| Synchronmotor mit Resolver      |               |                                                                                        |            | (●)          | •          |  |
| Asynchrongenerator sensorlos    |               | •                                                                                      |            |              |            |  |
| Asynchrongenerator mit Resolver |               | (●)                                                                                    | •          |              |            |  |
| Synchrongenerator sensorlos     |               |                                                                                        |            | •            |            |  |
| Synchrongenerator mit Resolver  |               |                                                                                        |            | (●)          | •          |  |
|                                 | Legende:      |                                                                                        |            |              |            |  |
|                                 | SLVFCI        | Sensorlose U/f-Kennliniensteuerung für Asynchron-<br>motoren                           |            |              |            |  |
|                                 | SLVCI         | Sensorlose Vektorregelung für Asynchronmotoren     Vektorregelung für Asynchronmotoren |            |              | nmotoren   |  |
|                                 | VCI           |                                                                                        |            |              |            |  |
|                                 | SLVCS         | Vektorregelung für Synchronmotoren  Auswertung der Motor-Rückführung                   |            |              |            |  |
|                                 | VCS           |                                                                                        |            |              |            |  |
|                                 | •             |                                                                                        |            |              |            |  |
|                                 | (●)           |                                                                                        |            |              |            |  |


### Struktur der verwendeten PID-Regler

Die verwendeten PID-Regler können mit den Parametern Vp (Porportionale Verstärkung), Tn (Nachstellzeit), Tv (Vorhaltzeit) und Tp (parasitäre Zeitkonstante) konfiguriert werden. Intern arbeiten die Regler mit Kp, Ki und Kd. Die Umrechnung ist wie folgt definiert:

- Kp = Vp
- Ki = Vp / Tn wenn Vp != 0, sonst Ki = 1 / Tn
- Kd = Vp \* Tv wenn Vp != 0, sonst Kd = Tv

Die Vorsteuerung ist mit dem Parameter Kff gewichtet.

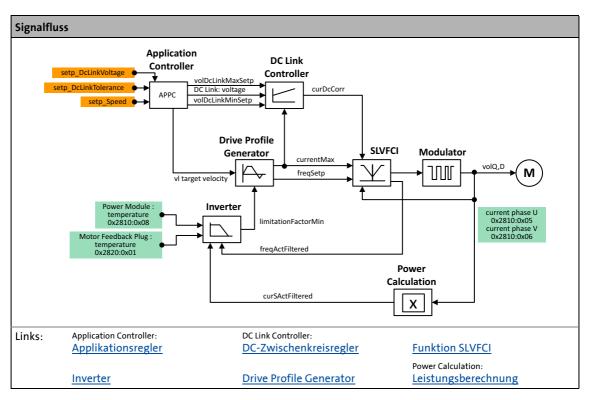
Die parasitäre Zeitkonstante (Tp) ist die Zeitkonstante des PT1-Gliedes, welchen den D-Anteil filtert und sollte im Vergleich zur Vorhaltzeit (Tv) möglichst klein gewählt werden, darf aber nicht kleiner als die Zykluszeit sein.



[6-3] Struktur der verwendeten PID-Regler

\_\_\_\_\_\_

## 6.8 SLVFCI - Sensorlose U/f-Kennliniensteuerung für Asynchronmotoren


In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name               | MOBILE |     |         |       |
|---------------|--------------------|--------|-----|---------|-------|
|               |                    | DCU    | PSU | DCU PSU | DCU S |
| <u>0x2912</u> | Motor SLVFCI INV A | •      |     |         | •     |
| <u>0x3112</u> | Motor SLVFCI INV B | •      |     | •       |       |

Bei der U/f-Kennliniensteuerung wird die Motorspannung des Inverters anhand einer linearen oder quadratischen Kennlinie in Abhängigkeit der zu erzeugenden Drehfeldfrequenz bzw. der Motordrehzahl ermittelt. Die Spannung folgt dabei einer fest vorgegebenen Kennlinie.

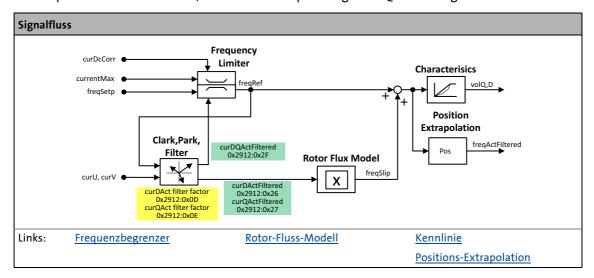
Mögliche CiA402-Betriebsmodi mit dieser Regelungsart:

| CiA402-Betriebsmodus             | Regelungsart |              |            |              |            |
|----------------------------------|--------------|--------------|------------|--------------|------------|
| (Mode of operation)              | SLVFCI       | <u>SLVCI</u> | <u>VCI</u> | <u>SLVCS</u> | <u>VCS</u> |
| <u>Velocity Mode</u>             | •            | •            | •          | •            | •          |
| Profile Torque Mode              | -            | •            | •          | •*           | •          |
| Cyclic Synchronous Position Mode | -            | -            | •          | -            | •          |
| Generator Mode                   | •            | •            | •          | •            | •          |
| * nicht bei Drehzahlen um 0 rpm  |              |              |            |              |            |



[6-4] Übersicht Signalfluss Sensorlose U/f-Kennliniensteuerung für Asynchronmotoren (vereinfachte Darstellung)

-----


## Eingangsgrößen über Public CAN

| Name                 | Info                                                                                                                                                                                   | Weitere Informationen                            |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| setp_DcLinkVoltage   | Sollwert für DC-Zwischenkreisspannung                                                                                                                                                  | ▶ <u>Status der übergeordneten Steuerung</u>     |
| setp_DcLinkTolerance | Dieser Wert wird zum Sollwert setp_DcLinkVoltage addiert bzw. davon subtrahiert, um den für ein Derating benötigten Maximal- und Minimalwert der DC-Zwischenkreisspannung zu erhalten. | ► Sollwerte für Motor A  ► Sollwerte für Motor B |
| setp_Speed           | Drehzahlsollwert                                                                                                                                                                       |                                                  |

## 6.8.1 Funktion SLVFCI

6.8

Im Funktionsblock SLVFCI wird die Frequenz limitiert und der beobachtete Schlupf addiert. Aus dieser Frequenz werden über die U/f-Kennlinie die Spannungen volQ und volD generiert.

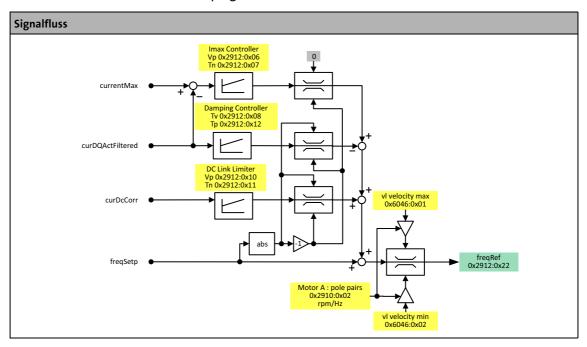


[6-5] Signalfluss Funktionsblock SLVFCI (vereinfachte Darstellung)

### Beschreibung der Parameter

### 0x2912 | 0x3112 - Motor A/B SLVFCI

| Sub.          | Name                  | Voreinstellung | Datentyp |
|---------------|-----------------------|----------------|----------|
| ▶ <u>0x0D</u> | curDAct filter factor | 0.00128        | REAL32   |
| <u> </u>      | curQAct filter factor | 0.00128        | REAL32   |


| Subindex 0x0D: curDAct filter factor                                               |                 |                |          |  |  |
|------------------------------------------------------------------------------------|-----------------|----------------|----------|--|--|
| Faktor für Strom-Istwertfilter (d-Komponente) = Ts / $\tau$ (mit Ts = 128 $\mu$ s) |                 |                |          |  |  |
| Skalierungsfaktor                                                                  | Einstellbereich | Voreinstellung | Datentyp |  |  |
| 1                                                                                  | 0 1             | 0.00128        | REAL32   |  |  |

| Subindex 0x0E: curQAct filter factor                                               |                                                           |         |        |  |  |
|------------------------------------------------------------------------------------|-----------------------------------------------------------|---------|--------|--|--|
| Faktor für Strom-Istwertfilter (q-Komponente) = Ts / $\tau$ (mit Ts = 128 $\mu$ s) |                                                           |         |        |  |  |
| Skalierungsfaktor                                                                  | Skalierungsfaktor Einstellbereich Voreinstellung Datentyp |         |        |  |  |
| 1                                                                                  | 0 1                                                       | 0.00128 | REAL32 |  |  |

\_\_\_\_\_

## 6.8.2 Frequenzbegrenzer

Der Frequenzbegrenzer hat die Aufgabe, die Motorfrequenz anhand der aktuellen DC-Zwischenkreisspannung und dem aktuellen Statorstrom zu erhöhen oder zu begrenzen. Er ist mit den Funktionsblöcken Imax Controller, Damping Controller und DC Link Limiter realisiert.



[6-6] Signalfluss Frequenzbegrenzer (vereinfachte Darstellung)

#### **Imax Controller**

Der Imax Controller reduziert das Moment, falls der Motorstrom an die Stromgrenze kommt. Diese Begrenzung wirkt beim Asynchronmotor auf die Sollfrequenz. Der Imax Controller ist als PI-Regler mit Reset-Windup realisiert. Die Stromgrenze (maximaler Überlaststrom des Gerätes) muss im Drive-Profile-Parameter "tqMaxCurrent" (Objekt 0x6073 bzw. 0x6873) eingestellt werden.

## **Damping Controller**

Der Damping Controller versucht durch Anpassungen der Sollfrequenz eventuelle Schwingungen im Statorstrom zu bedämpfen. Er ist als D-Regler realisiert.

#### **DC Link Limiter**

Der DC Link Limiter passt anhand des aktuellen Korrekturstromes vom <u>DC-Zwischenkreisregler</u> die Sollfrequenz so an, damit die Zwischenkreisspannung im vorgegebenen Band bleibt. Er ist als Pl-Regler mit Reset-Windup realisiert.

## Frequenzbegrenzung

Die durch Imax Controller, Damping Controller und DC Link Limiter veränderte Sollfrequenz wird auf die maximale und minimale Sollfrequenz begrenzt, die sich aus den Drehzahlgrenzwerten "vl velocity max" und "vl velocity min" sowie der Polpaarzahl ergibt.

SLVFCI - Sensorlose U/f-Kennliniensteuerung für Asynchronmotoren

\_\_\_\_\_

## Beschreibung der Parameter

## 0x2910 | 0x3110 - Motor A/B

6.8

| Sub.          | Name       | Voreinstellung | Datentyp   |
|---------------|------------|----------------|------------|
| ▶ <u>0x02</u> | pole pairs | 1              | UNSIGNED16 |

| Subindex 0x02: pole pairs |                        |                |            |  |  |  |
|---------------------------|------------------------|----------------|------------|--|--|--|
| Polpaarzahl des Motors    | Polpaarzahl des Motors |                |            |  |  |  |
| Skalierungsfaktor         | Einstellbereich        | Voreinstellung | Datentyp   |  |  |  |
| 1                         | 1100                   | 1              | UNSIGNED16 |  |  |  |

## 0x2912 | 0x3112 - Motor A/B SLVFCI

| Sub.          | Name                  | Voreinstellung | Datentyp |
|---------------|-----------------------|----------------|----------|
| ▶ <u>0x06</u> | IMax Controller Vp    | 0.25 Hz/A      | REAL32   |
| ▶ <u>0x07</u> | IMax Controller Tn    | 0.065 s        | REAL32   |
| ▶ <u>0x08</u> | Damping Controller Tv | 0 s            | REAL32   |
| ▶ <u>0x10</u> | DC Link Limiter Vp    | 1 Hz/A         | REAL32   |
| ▶ <u>0x11</u> | DC Link Limiter Tn    | 0.1 s          | REAL32   |
| ▶ <u>0x12</u> | Damping Controller Tp | 0.001 s        | REAL32   |

| Subindex 0x06: IMax Controller Vp                         |                                                                            |           |        |  |  |  |
|-----------------------------------------------------------|----------------------------------------------------------------------------|-----------|--------|--|--|--|
|                                                           | IMax Controller: Verstärkung Vp • Der Regler ist als PI-Regler realisiert. |           |        |  |  |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp |                                                                            |           |        |  |  |  |
| 1                                                         | 0 1000 Hz/A                                                                | 0.25 Hz/A | REAL32 |  |  |  |

| Subindex 0x07: IMax Controller Tn                                             |                 |                |          |  |  |
|-------------------------------------------------------------------------------|-----------------|----------------|----------|--|--|
| IMax Controller: Nachstellzeit Tn  • Der Regler ist als PI-Regler realisiert. |                 |                |          |  |  |
| Skalierungsfaktor                                                             | Einstellbereich | Voreinstellung | Datentyp |  |  |
| 1                                                                             | 0 100 s         | 0.065 s        | REAL32   |  |  |

| Subindex 0x08: Damping Controller Tv |                                     |                |          |  |  |  |
|--------------------------------------|-------------------------------------|----------------|----------|--|--|--|
| Damping Controller: Vorhal           | Damping Controller: Vorhaltezeit Tv |                |          |  |  |  |
| Skalierungsfaktor                    | Einstellbereich                     | Voreinstellung | Datentyp |  |  |  |
| 1 0 100 s 0 s REAL32                 |                                     |                |          |  |  |  |

| Subindex 0x10: DC Link Limiter Vp                                                           |                 |                |          |  |
|---------------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| DC Link Limiter: Verstärkung Vp • Der Regler ist als PI-Regler mit Reset-Windup realisiert. |                 |                |          |  |
| Skalierungsfaktor                                                                           | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                                           | 0 100 Hz/A      | 1 Hz/A         | REAL32   |  |

## 6.8 SLVFCI - Sensorlose U/f-Kennliniensteuerung für Asynchronmotoren

.\_\_\_\_\_

| Subindex 0x11: DC Link Limiter Tn                                                              |                 |                |          |  |
|------------------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| DC Link Limiter: Nachstellzeit Tn  • Der Regler ist als PI-Regler mit Reset-Windup realisiert. |                 |                |          |  |
| Skalierungsfaktor                                                                              | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                                              | 0 100 s         | 0.1 s          | REAL32   |  |

| Subindex 0x12: Damping Controller Tp |                 |                |          |  |
|--------------------------------------|-----------------|----------------|----------|--|
| Skalierungsfaktor                    | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                    | 0.000128 10 s   | 0.001 s        | REAL32   |  |

## 0x6046 | 0x6846 - Drive Profile Inverter A/B vI velocity max min

| Sub.          | Name | Voreinstellung       | Datentyp |
|---------------|------|----------------------|----------|
| ▶ <u>0x01</u> | max  | 3000.000000 rev/min  | INT32    |
| ▶ <u>0x02</u> | min  | -3000.000000 rev/min | INT32    |

| Subindex 0x01: max   |                        |                     |          |
|----------------------|------------------------|---------------------|----------|
| Obere Drehzahlgrenze |                        |                     |          |
| Skalierungsfaktor    | Einstellbereich        | Voreinstellung      | Datentyp |
| 6.103515625000E-005  | -131072 131072 rev/min | 3000.000000 rev/min | INT32    |

| Subindex 0x02: min    |                        |                      |          |
|-----------------------|------------------------|----------------------|----------|
| Untere Drehzahlgrenze |                        |                      |          |
| Skalierungsfaktor     | Einstellbereich        | Voreinstellung       | Datentyp |
| 6.103515625000E-005   | -131072 131072 rev/min | -3000.000000 rev/min | INT32    |

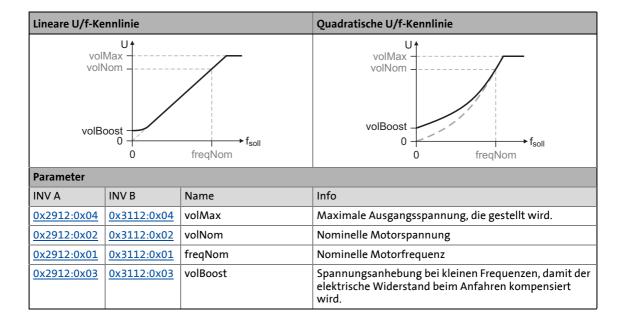
## 0x6073 | 0x6873 - Drive Profile Inverter A/B tq max current

### **Maximaler Strom**

| Skalierungsfaktor   | Einstellbereich | Voreinstellung | Datentyp |
|---------------------|-----------------|----------------|----------|
| 1.562500000000E-002 | 0 350 A         | 100 A          | INT16    |

\_\_\_\_\_\_

#### 6.8.3 Kennlinie


Zur Anpassung an unterschiedliche Lastprofile ist die Form der U/f-Kennlinie auswählbar. Die Auswahl erfolgt über Bit 12 und Bit 13 des Parameters "control mode" (Objekt <u>0x2910:0x01</u> bzw. 0x3110:0x01 für DCU B). ▶ Übersicht der Regelungsarten

- Lineare U/f-Kennlinie: Für Antriebe mit konstant verlaufendem Lastmoment über der Drehzahl.
- Quadratische U/f-Kennlinie: Für Antriebe mit linear oder quadratisch verlaufendem Lastmoment über der Drehzahl. Quadratische U/f-Kennlinien werden bevorzugt bei Zentrifugalpumpen- und Lüfterantrieben angewendet.



## Hinweis!

- Im Einzelfall ist immer zu prüfen, ob der betreffende Antrieb für den Betrieb mit einer quadratischen U/f-Kennlinie geeignet ist!
- Die Spannungen sind als Spitzenwerte bezogen auf den Sternpunkt einzugeben! (Keine verkettete Spannung eingeben!)



\_\_\_\_\_

## 6.8.3.1 Spannungsanhebung (Boost)

Um das Anlaufverhalten zu optimieren, kann eine konstante, lastunabhängige Spannungsanhebung bei kleinen Drehzahlen (unterhalb der U/f-Nennfrequenz) oder bei Stillstand des Motors vorgeben werden.



## Stop!

Bei längerem Betrieb des Motors im Stillstand – insbesondere bei kleinen Motoren – besteht die Gefahr, dass der Motor durch Übertemperatur zerstört wird!

- Schließen Sie den Thermokontakt (Öffner) oder Temperatursensor (KTY, PT1000) des Motors an und konfigurieren Sie die <u>Motortemperaturüberwachung</u>.
- Betreiben Sie eigenbelüftete Motoren ggf. mit einem Fremdlüfter.

Die Spannungsanhebung ist in Abhängigkeit des benötigten Anlaufmomentes so einzustellen, dass nach Reglerfreigabe der dafür notwendige Motorstrom zur Verfügung steht.

• Die Spannungsanhebung lässt sich durch Multiplikation des Statorwiderstandes mit dem Nenn-Magnetisierungsstrom berechnen:

$$U_{Boost} = R_S \cdot I_{mN}$$

- Alternativ kann die Spannungsanhebung auch empirisch ermittelt werden, indem die Einstellung so lange erhöht wird, bis der Nenn-Magnetisierungsstrom fließt.
- Die Spannungsanhebung wird über folgende Formel zur Kennlinienspannung addiert:

$$U = \sqrt{U_{Kennlinie}^2 + U_{Boost}^2}$$

8 SLVFCI - Sensorlose U/f-Kennliniensteuerung für Asynchronmotoren

\_\_\_\_\_

## 6.8.3.2 Beispiel für die Einstellung der U/f-Parameter eines Asynchronmotors

## Beispielhafte Angaben auf dem Motor-Typenschild

| kW  | V          | Hz | A         | 1/min | cos φ |
|-----|------------|----|-----------|-------|-------|
| 2.2 | Υ/Δ400/230 | 50 | 4.7 / 8.1 | 1440  | 0.80  |

Bei 50 Hz hat der Motor eine Drehzahl von 1440 min<sup>-1</sup> und damit folgende Polpaarzahl:

Polpaarzahl = 
$$\frac{50 \text{ Hz}}{1440 \text{ min}^{-1}} \cdot 60 \text{ s} = 2.08 \text{ (2 Polpaare)}$$

## Parametereinstellungen für die U/f-Kennlinie



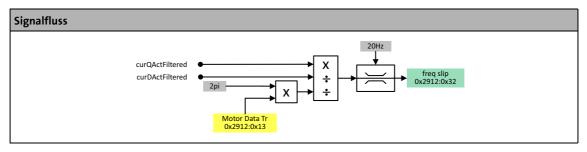
## Hinweis!

Die Spannungen sind als Spitzenwerte bezogen auf den Sternpunkt einzugeben! (Keine verkettete Spannung eingeben!)

## Einstellungen für Sternschaltung:

| Parameter | Einstellung | Berechnung                                                                                                                                |
|-----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| volMax    | 327 V       | $volMax = 400 \text{ V} \cdot \frac{\sqrt{2}}{\sqrt{3}} = 327 \text{ V}$                                                                  |
| volNom    | 327 V       | volNom = $400 \text{ V} \cdot \frac{\sqrt{2}}{\sqrt{3}} = 327 \text{ V}$                                                                  |
| freqNom   | 50 Hz       |                                                                                                                                           |
| volBoost  | 5 V         | <b>Hinweis:</b> Bei Einstellung dieses Parameters muss darauf geachtet werden, dass im Stillstand der Nennstrom nicht überschritten wird! |

## Einstellungen für Dreieckschaltung:


| Parameter | Einstellung | Berechnung                                                                                                                                |
|-----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| volMax    | 187 V       | $volMax = 230 \text{ V} \cdot \frac{\sqrt{2}}{\sqrt{3}} = 187 \text{ V}$                                                                  |
| volNom    | 187 V       | volNom = 230 V $\cdot \frac{\sqrt{2}}{\sqrt{3}}$ = 187 V                                                                                  |
| freqNom   | 50 Hz       |                                                                                                                                           |
| volBoost  | 5 V         | <b>Hinweis:</b> Bei Einstellung dieses Parameters muss darauf geachtet werden, dass im Stillstand der Nennstrom nicht überschritten wird! |

6.8 SLVFCI - Sensorlose U/f-Kennliniensteuerung für Asynchronmotoren

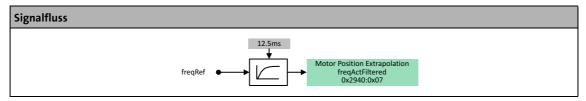
\_\_\_\_\_

## 6.8.4 Rotor-Fluss-Modell

Aus den gemessenen Strömen und dem Trägheitsmoment des Motors wird der beobachtete Schlupf berechnet.



[6-7] Signalfluss Rotor-Fluss-Modell (vereinfachte Darstellung)


### Beschreibung der Parameter

## 0x2912 | 0x3112 - Motor A/B SLVFCI

| Subindex 0x13: Motor Data Tr |                 |                |          |  |
|------------------------------|-----------------|----------------|----------|--|
| Skalierungsfaktor            | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                            | 0 5 s           | 0 s            | REAL32   |  |

## 6.8.5 Positions-Extrapolation

Die Frequenz wird mit einer Zeitkonstante von 12.5 ms gefiltert.



[6-8] Signalfluss Positions-Extrapolation (vereinfachte Darstellung)

6.9 SLVCI - Sensorlose Vektorregelung für Asynchronmotoren

\_\_\_\_\_

## 6.9 SLVCI - Sensorlose Vektorregelung für Asynchronmotoren

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name              | MOBILE |     |         |       |
|---------------|-------------------|--------|-----|---------|-------|
|               |                   | DCU    | PSU | DCU PSU | DCU S |
| <u>0x2916</u> | Motor SLVCI INV A | •      |     |         | •     |
| <u>0x3116</u> | Motor SLVCI INV B | •      |     | •       |       |

Die sensorlose (feldorientierte) Vektorregelung für Asynchronmotoren basiert auf einer entkoppelten, getrennten Regelung des drehmomentbildenden und des feldbildenden Stromanteils. Zusätzlich wird über ein Motormodell die Istdrehzahl rekonstruiert, so dass auf einen Drehzahlgeber verzichtet werden kann.

Im Vergleich zur U/f-Kennliniensteuerung ohne Rückführung erzielen Sie mit der sensorlosen Vektorregelung

- ein höheres maximales Drehmoment über den gesamten Drehzahlbereich,
- eine höhere Drehzahlgenauigkeit,
- eine höhere Rundlaufgüte,
- einen höheren Wirkungsgrad,
- die Realisierung eines drehmomentgestellten Betriebs mit Drehzahlklammerung,
- die Begrenzung des maximalen motorischen und generatorischen Drehmoments im drehzahlgestellten Betrieb.

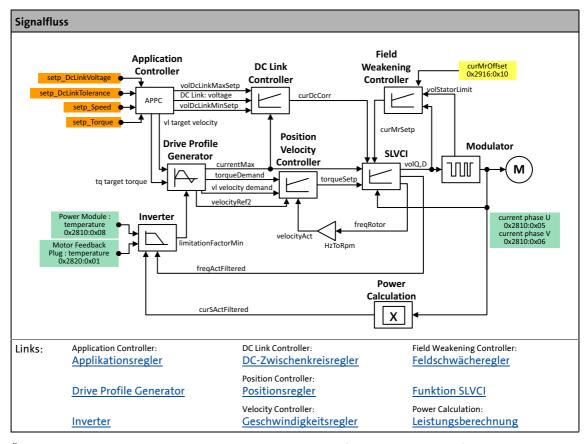


## Hinweis!

Die Regelungsart SLVCI ist ungeeignet für Anwendungen mit

- · kleinen negativen Drehzahlen und positivem Drehmoment,
- kleinen positiven Drehzahlen und negativem Drehmoment.

**Empfohlene alternative Regelungsart:** 


▶ VCI - Vektorregelung für Asynchronmotoren (☐ 123)

Mögliche CiA402-Betriebsmodi mit dieser Regelungsart:

| CiA402-Betriebsmodus             | Regelungsart  |       |            |               |            |
|----------------------------------|---------------|-------|------------|---------------|------------|
| (Mode of operation)              | <u>SLVFCI</u> | SLVCI | <u>VCI</u> | <u>SLVCS</u>  | <u>VCS</u> |
| <u>Velocity Mode</u>             | •             | •     | •          | •             | •          |
| Profile Torque Mode              | -             | •     | •          | •*            | •          |
| Cyclic Synchronous Position Mode | -             | -     | •          | -             | •          |
| Generator Mode                   | •             | •     | •          | •             | •          |
| * nicht bei Drehzahlen um 0 rpm  |               |       |            | hlen um 0 rpm |            |

6.9

-----

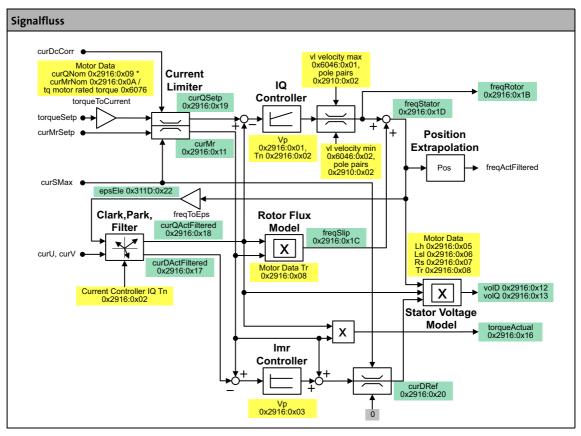


[6-9] Übersicht Signalfluss Sensorlose Vektorregelung für Asynchronmotoren (vereinfachte Darstellung)

## Eingangsgrößen über Public CAN

| Name                 | Info                                                                                                                                                                                   | Weitere Informationen                                                 |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| setp_DcLinkVoltage   | Sollwert für DC-Zwischenkreisspannung                                                                                                                                                  | ▶ Status der übergeordneten Steuerung                                 |
| setp_DcLinkTolerance | Dieser Wert wird zum Sollwert setp_DcLinkVoltage addiert bzw. davon subtrahiert, um den für ein Derating benötigten Maximal- und Minimalwert der DC-Zwischenkreisspannung zu erhalten. | <ul><li>Sollwerte für Motor A</li><li>Sollwerte für Motor B</li></ul> |
| setp_Speed           | Velocity Mode: Drehzahlsollwert Profile Torque Mode: Obere Drehzahlgrenze für Drehzahlklammerung                                                                                       |                                                                       |
| setp_Torque          | <u>Profile Torque Mode</u> : Drehmomentsollwert                                                                                                                                        |                                                                       |

## Beschreibung der Parameter


### 0x2916 | 0x3116 - Motor A/B SLVCI

| Subindex 0x10: curMrOffset |                               |                |          |  |  |
|----------------------------|-------------------------------|----------------|----------|--|--|
| Magnetisierungsstrom-      | Magnetisierungsstrom-Sollwert |                |          |  |  |
| Skalierungsfaktor          | Einstellbereich               | Voreinstellung | Datentyp |  |  |
| 1                          | 0 200 A                       | 10 A           | REAL32   |  |  |

------

### 6.9.1 Funktion SLVCI

Der Strombegrenzer limitiert die Sollwerte für den drehmomentbildenden und den feldbildenden Strom anhand des Maximalstroms. Separate, entkoppelte Regler regeln die Istströme auf die limitierten Sollströme. Im Stator-Spannungsmodell werden die Spannungen berechnet. Mit dem Rotor-Flussmodell wird der Schlupf berechnet und daraus die Istdrehzahl.



[6-10] Signalfluss Funktionsblock SLVCI (vereinfachte Darstellung)

6.9 SLVCI - Sensorlose Vektorregelung für Asynchronmotoren

-----

## Beschreibung der Parameter

## 0x2916 | 0x3116 - Motor A/B SLVCI

| Sub.          | Name                      | Voreinstellung | Datentyp |
|---------------|---------------------------|----------------|----------|
| ▶ <u>0x01</u> | Current Controller IQ Vp  | 0.5 Hz/A       | REAL32   |
| ▶ <u>0x02</u> | Current Controller IQ Tn  | 1 s            | REAL32   |
| ▶ <u>0x03</u> | Current Controller Imr Vp | 1              | REAL32   |
| ▶ <u>0x05</u> | Motor Data Lh             | 500 mH         | REAL32   |
| ▶ <u>0x06</u> | Motor Data Lsl            | 500 mH         | REAL32   |
| ▶ <u>0x07</u> | Motor Data Rs             | 500 mOhm       | REAL32   |
| ▶ <u>0x08</u> | Motor Data Tr             | 0.05 s         | REAL32   |
| ▶ <u>0x09</u> | Motor Data curQNom        | 50 A           | REAL32   |
| ▶ <u>0x0A</u> | Motor Data curMrNom       | 10 A           | REAL32   |
| ▶ <u>0x0B</u> | curMrLoadFactor           | 0              | REAL32   |
| ▶ <u>0x10</u> | curMrOffset               | 10 A           | REAL32   |

| Subindex 0x01: Current Controller IQ Vp                                                |                 |                |          |  |
|----------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Stromregler (d-Komponente): Verstärkung Vp  • Der Regler ist als PI-Regler realisiert. |                 |                |          |  |
| Skalierungsfaktor                                                                      | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                                      | 0 1000 Hz/A     | 0.5 Hz/A       | REAL32   |  |

| Subindex 0x02: Current Controller IQ Tn                                                  |                 |                |          |  |
|------------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Stromregler (d-Komponente): Nachstellzeit Tn  • Der Regler ist als PI-Regler realisiert. |                 |                |          |  |
| Skalierungsfaktor                                                                        | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                                        | 0 100 s         | 1 s            | REAL32   |  |

| Subindex 0x03: Current Controller Imr Vp                                              |                 |                |          |  |
|---------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Stromregler (q-Komponente): Verstärkung Vp  • Der Regler ist als P-Regler realisiert. |                 |                |          |  |
| Skalierungsfaktor                                                                     | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                                     | 0 2             | 1              | REAL32   |  |

| Subindex 0x05: Motor Data Lh |                         |                |          |  |  |
|------------------------------|-------------------------|----------------|----------|--|--|
| Motor-Hauptinduktivität      | Motor-Hauptinduktivität |                |          |  |  |
| Skalierungsfaktor            | Einstellbereich         | Voreinstellung | Datentyp |  |  |
| 1000                         | 0 1000 mH               | 500 mH         | REAL32   |  |  |

| Subindex 0x06: Motor Data Lsl  |                 |                |          |  |
|--------------------------------|-----------------|----------------|----------|--|
| Motor-Ständerstreuinduktivität |                 |                |          |  |
| Skalierungsfaktor              | Einstellbereich | Voreinstellung | Datentyp |  |
| 1000                           | 0 1000 mH       | 500 mH         | REAL32   |  |

121

## 6.9 SLVCI - Sensorlose Vektorregelung für Asynchronmotoren

.\_\_\_\_\_

| Subindex 0x07: Motor Data Rs |                         |                |          |  |  |
|------------------------------|-------------------------|----------------|----------|--|--|
| Motor-Ständerwiderstand      | Motor-Ständerwiderstand |                |          |  |  |
| Skalierungsfaktor            | Einstellbereich         | Voreinstellung | Datentyp |  |  |
| 1000                         | 0 50000 mOhm            | 500 mOhm       | REAL32   |  |  |

| Subindex 0x08: Motor Data Tr |                          |                |          |  |
|------------------------------|--------------------------|----------------|----------|--|
| Motor-Rotorzeitkonstante     | Motor-Rotorzeitkonstante |                |          |  |
| Skalierungsfaktor            | Einstellbereich          | Voreinstellung | Datentyp |  |
| 1                            | 0 5 s                    | 0.05 s         | REAL32   |  |

| Subindex 0x09: Motor Data curQNom |                                 |                |          |  |  |
|-----------------------------------|---------------------------------|----------------|----------|--|--|
| Nomineller Strom (q-Kom           | Nomineller Strom (q-Komponente) |                |          |  |  |
| Skalierungsfaktor                 | Einstellbereich                 | Voreinstellung | Datentyp |  |  |
| 1                                 | 0 200 A                         | 50 A           | REAL32   |  |  |

| Subindex 0x0A: Motor Data curMrNom |                 |                |          |  |
|------------------------------------|-----------------|----------------|----------|--|
| Nomineller Magnetisierungsstrom    |                 |                |          |  |
| Skalierungsfaktor                  | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                  | 0 200 A         | 10 A           | REAL32   |  |

| Subindex 0x0B: curMrLoadFactor |                 |                |          |  |
|--------------------------------|-----------------|----------------|----------|--|
| Skalierungsfaktor              | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                              | 0 2             | 0              | REAL32   |  |

| Subindex 0x10: curMrOffset    |                 |                |          |  |
|-------------------------------|-----------------|----------------|----------|--|
| Magnetisierungsstrom-Sollwert |                 |                |          |  |
| Skalierungsfaktor             | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                             | 0 200 A         | 10 A           | REAL32   |  |

**BUCHER** hydraulics

## 6.10 VCI - Vektorregelung für Asynchronmotoren

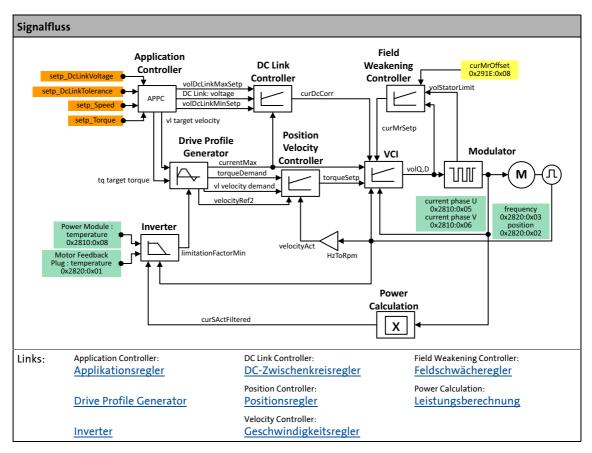
\_\_\_\_\_

## 6.10 VCI - Vektorregelung für Asynchronmotoren

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name            | MOBILE |     |         |       |
|---------------|-----------------|--------|-----|---------|-------|
|               |                 | DCU    | PSU | DCU PSU | DCU S |
| 0x291E        | Motor VCI INV A | •      |     |         |       |
| <u>0x311E</u> | Motor VCI INV B | •      |     | •       |       |

Die Vektorregelung für Asynchronmotoren (VCI) basiert auf einer entkoppelten, getrennten Regelung des drehmomentbildenden und des feldbildenden Stromanteils. Die Motorregelung basiert auf einer rückgeführten, feldorientierten und kaskadierten Reglerstruktur und ermöglicht einen dynamischen und stabilen Betrieb in allen vier Quadranten.


im Vergleich zur sensorlosen Vektorregelung erzielen Sie mit dieser Regelung

- ein höheres maximales Drehmoment über den gesamten Drehzahlbereich,
- eine höhere Drehzahlgenauigkeit,
- eine höhere Rundlaufgüte,
- einen höheren Wirkungsgrad,
- eine optimale Regelung auch bei Drehzahlen um 0 rpm.

Mögliche CiA402-Betriebsmodi mit dieser Regelungsart:

| CiA402-Betriebsmodus             | Regelungsart  |              |     |              |            |
|----------------------------------|---------------|--------------|-----|--------------|------------|
| (Mode of operation)              | <u>SLVFCI</u> | <u>SLVCI</u> | VCI | <u>SLVCS</u> | <u>VCS</u> |
| <u>Velocity Mode</u>             | •             | •            | •   | •            | •          |
| Profile Torque Mode              | -             | •            | •   | •*           | •          |
| Cyclic Synchronous Position Mode | -             | -            | •   | -            | •          |
| Generator Mode                   | •             | •            | •   | •            | •          |
| * nicht bei Drehzahlen um 0 rpm  |               |              |     |              |            |

-----



[6-11] Übersicht Signalfluss Vektorregelung für Asynchronmotoren (vereinfachte Darstellung)

## Eingangsgrößen über Public CAN

| Name                 | Info                                                                                                                                                                                   | Weitere Informationen                                                     |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| setp_DcLinkVoltage   | Sollwert für DC-Zwischenkreisspannung                                                                                                                                                  | ▶ <u>Status der übergeordneten Steuerung</u>                              |
| setp_DcLinkTolerance | Dieser Wert wird zum Sollwert setp_DcLinkVoltage addiert bzw. davon subtrahiert, um den für ein Derating benötigten Maximal- und Minimalwert der DC-Zwischenkreisspannung zu erhalten. | <ul><li>▶ Sollwerte für Motor A</li><li>▶ Sollwerte für Motor B</li></ul> |
| setp_Speed           | Velocity Mode: Drehzahlsollwert Profile Torque Mode: Drehzahlgrenze für Drehzahlklammerung                                                                                             |                                                                           |
| setp_Torque          | Profile Torque Mode: Drehmomentsollwert                                                                                                                                                |                                                                           |

6.10 VCI - Vektorregelung für Asynchronmotoren

\_\_\_\_\_

## Beschreibung der Parameter

## 0x291E | 0x311E - Motor A/B VCI

| Sub.          | Name                      | Voreinstellung | Datentyp |
|---------------|---------------------------|----------------|----------|
| ▶ <u>0x01</u> | Current Controller ID Vp  | 1 V/A          | REAL32   |
| ▶ <u>0x02</u> | Current Controller ID Tn  | 0.01 s         | REAL32   |
| ▶ <u>0x03</u> | Current Controller IQ Vp  | 1 V/A          | REAL32   |
| ▶ <u>0x04</u> | Current Controller IQ Tn  | 0.01 s         | REAL32   |
| ▶ <u>0x05</u> | Motor Data Tr             | 0.05 s         | REAL32   |
| ▶ <u>0x06</u> | Motor Data curQNom        | 50 A           | REAL32   |
| ▶ <u>0x07</u> | Motor Data curMrNom       | 10 A           | REAL32   |
| ▶ <u>0x08</u> | curMrOffset               | 10 A           | REAL32   |
| ▶ <u>0x09</u> | curMrLoadFactor           | 0              | REAL32   |
| ▶ <u>0x0A</u> | Current Controller Imr Vp | 1              | REAL32   |

| Subindex 0x01: Current Controller ID Vp                                                |                 |                |          |  |
|----------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Stromregler (d-Komponente): Verstärkung Vp  • Der Regler ist als PI-Regler realisiert. |                 |                |          |  |
| Skalierungsfaktor                                                                      | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                                      | 0 1000 V/A      | 1 V/A          | REAL32   |  |

| Subindex 0x02: Current Controller ID Tn                                                  |                 |                |          |  |
|------------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Stromregler (d-Komponente): Nachstellzeit Tn  • Der Regler ist als PI-Regler realisiert. |                 |                |          |  |
| Skalierungsfaktor                                                                        | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                                        | 0 100 s         | 0.01 s         | REAL32   |  |

| Subindex 0x03: Current Controller IQ Vp                                                |                 |                |          |  |
|----------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Stromregler (q-Komponente): Verstärkung Vp  • Der Regler ist als PI-Regler realisiert. |                 |                |          |  |
| Skalierungsfaktor                                                                      | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                                      | 0 1000 V/A      | 1 V/A          | REAL32   |  |

| Subindex 0x04: Current Controller IQ Tn                                                  |                 |                |          |  |
|------------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Stromregler (q-Komponente): Nachstellzeit Tn  • Der Regler ist als PI-Regler realisiert. |                 |                |          |  |
| Skalierungsfaktor                                                                        | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                                        | 0 100 s         | 0.01 s         | REAL32   |  |

| Subindex 0x05: Motor Data Tr |                 |                |          |  |
|------------------------------|-----------------|----------------|----------|--|
| Motor-Rotorzeitkonstante     |                 |                |          |  |
| Skalierungsfaktor            | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                            | 0 5 s           | 0.05 s         | REAL32   |  |

## 6.10 VCI - Vektorregelung für Asynchronmotoren

.\_\_\_\_\_

| Subindex 0x06: Motor Data curQNom |                                 |                |          |  |  |
|-----------------------------------|---------------------------------|----------------|----------|--|--|
| Nomineller Strom (q-Kompo         | Nomineller Strom (q-Komponente) |                |          |  |  |
| Skalierungsfaktor                 | Einstellbereich                 | Voreinstellung | Datentyp |  |  |
| 1                                 | 0 200 A                         | 50 A           | REAL32   |  |  |

| Subindex 0x07: Motor Data curMrNom |                 |                |          |  |  |
|------------------------------------|-----------------|----------------|----------|--|--|
| Nomineller Magnetisierur           | gsstrom         |                |          |  |  |
| Skalierungsfaktor                  | Einstellbereich | Voreinstellung | Datentyp |  |  |
| 1                                  | 0 200 A         | 10 A           | REAL32   |  |  |

| Subindex 0x08: curMrOffset |                               |                |          |  |  |
|----------------------------|-------------------------------|----------------|----------|--|--|
| Magnetisierungsstrom-      | Magnetisierungsstrom-Sollwert |                |          |  |  |
| Skalierungsfaktor          | Einstellbereich               | Voreinstellung | Datentyp |  |  |
| 1                          | 0 200 A                       | 10 A           | REAL32   |  |  |

| Subindex 0x09: curMrLoadFactor |                                                                                                     |                |          |  |  |
|--------------------------------|-----------------------------------------------------------------------------------------------------|----------------|----------|--|--|
|                                | Lastfaktor des Magnetisierungsstromes • (curMrRef = curMrOffset +  curQSetpoint  * curMrLoadFactor) |                |          |  |  |
| Skalierungsfaktor              | Einstellbereich                                                                                     | Voreinstellung | Datentyp |  |  |
| 1                              | 0 2                                                                                                 | 0              | REAL32   |  |  |

| Subindex 0x0A: Current Controller Imr Vp                  |      |   |        |  |
|-----------------------------------------------------------|------|---|--------|--|
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp |      |   |        |  |
| 1                                                         | 0 10 | 1 | REAL32 |  |

\_\_\_\_\_

## 6.11 SLVCS - Sensorlose Vektorregelung für Synchronmotoren

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                                           | MOBILE |     |         |       |
|---------------|------------------------------------------------|--------|-----|---------|-------|
|               |                                                | DCU    | PSU | DCU PSU | DCU S |
| <u>0x291A</u> | Motor SLVCS (Position Velocity Observer) INV A | •      |     |         | •     |
| <u>0x311A</u> | Motor SLVCS (Position Velocity Observer) INV B | •      |     | •       |       |

Die sensorlose Vektorregelung für Synchronmotoren basiert auf einer entkoppelten, getrennten Regelung des drehmomentbildenden Stromanteils und des Stroms in Feldrichtung. Im Gegensatz zur Servoregelung werden Drehzahlistwert und Rotorlage über ein Motormodell rekonstruiert.

Mögliche CiA402-Betriebsmodi mit dieser Regelungsart:

| CiA402-Betriebsmodus             | Regelungsart  |              |            |       |            |  |
|----------------------------------|---------------|--------------|------------|-------|------------|--|
| (Mode of operation)              | <u>SLVFCI</u> | <u>SLVCI</u> | <u>VCI</u> | SLVCS | <u>VCS</u> |  |
| <u>Velocity Mode</u>             | •             | •            | •          | •     | •          |  |
| Profile Torque Mode              | -             | •            | •          | •*    | •          |  |
| Cyclic Synchronous Position Mode | -             | -            | •          | -     | •          |  |
| Generator Mode                   | •             | •            | •          | •     | •          |  |
| * nicht bei Drehzahlen um 0 rpm  |               |              |            |       |            |  |

Signalfluss Field Application DC Link Weakening curDOffset 0x2918:0x10 Controller setp DcLinkVoltage Controller Controller volDcLinkMaxSetr DC Link: voltage APPC vl target velocity curMrOffset **Position Drive Profile** Velocity Modulator Generator VCS Controller torqueDemano to target torque vl velocity demand velocityRef2 velocityAct **Position Velocity** limitationFactorMi HzToRpm Observer Inverter freqAct 0x291A:0x14 temperature 0x2810:0x08 Motor Feedback current phase U 0x2810:0x05 current phase V 0x2810:0x06 Power Calculation Links: **Application Controller:** DC Link Controller: Field Weakening Controller: **Applikationsregler** DC-Zwischenkreisregler Feldschwächeregler Position Velocity Observer: Position Controller: **Drive Profile Generator** Position-Geschwindigkeit-Positionsregler **Beobachter** Power Calculation: Velocity Controller: <u>Inverter</u> Geschwindigkeitsregler Leistungsberechnung

[6-12] Übersicht Signalfluss Sensorlose Vektorregelung für Synchronmotoren (vereinfachte Darstellung)

6.11 SLVCS - Sensorlose Vektorregelung für Synchronmotoren

-----

## Eingangsgrößen über Public CAN

| Name                 | Info                                                                                                                                                                                   | Weitere Informationen                           |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| setp_DcLinkVoltage   | Sollwert für DC-Zwischenkreisspannung                                                                                                                                                  | ▶ <u>Status der übergeordneten Steuerung</u>    |
| setp_DcLinkTolerance | Dieser Wert wird zum Sollwert setp_DcLinkVoltage addiert bzw. davon subtrahiert, um den für ein Derating benötigten Maximal- und Minimalwert der DC-Zwischenkreisspannung zu erhalten. | ► Sollwerte für Motor A ► Sollwerte für Motor B |
| setp_Speed           | Velocity Mode: Drehzahlsollwert Profile Torque Mode: Drehzahlgrenze für Drehzahlklammerung                                                                                             |                                                 |
| setp_Torque          | Profile Torque Mode: Drehmomentsollwert                                                                                                                                                |                                                 |

## Beschreibung der Parameter

## 0x2918 | 0x3118 - Motor A/B VCS

| Sub.          | Name                     | Voreinstellung | Datentyp |
|---------------|--------------------------|----------------|----------|
| ▶ <u>0x06</u> | Current Controller ID Vp | 1 V/A          | REAL32   |
| ▶ <u>0x07</u> | Current Controller ID Tn | 0.01 s         | REAL32   |
| ▶ <u>0x0A</u> | Current Controller IQ Vp | 1 V/A          | REAL32   |
| ▶ <u>0x0B</u> | Current Controller IQ Tn | 0.01 s         | REAL32   |
| ▶ <u>0x0C</u> | Decoupling Vp            | 0.9            | REAL32   |
| ▶ <u>0×10</u> | curDOffset               | 0 A            | INT16    |
| ▶ <u>0x12</u> | Motor Data Rotor Flux    | 0.6666 Vs      | REAL32   |
| ▶ <u>0x13</u> | Motor Data Ld            | 0 mH           | REAL32   |
| ▶ <u>0×14</u> | Motor Data Lq            | 0 mH           | REAL32   |

| Subindex 0x06: Current Controller ID Vp                                                |                 |                |          |  |  |
|----------------------------------------------------------------------------------------|-----------------|----------------|----------|--|--|
| Stromregler (d-Komponente): Verstärkung Vp  • Der Regler ist als PI-Regler realisiert. |                 |                |          |  |  |
| Skalierungsfaktor                                                                      | Einstellbereich | Voreinstellung | Datentyp |  |  |
| 1                                                                                      | 0 1000 V/A      | 1 V/A          | REAL32   |  |  |

| Subindex 0x07: Current Controller ID Tn                                                  |         |        |        |  |  |
|------------------------------------------------------------------------------------------|---------|--------|--------|--|--|
| Stromregler (d-Komponente): Nachstellzeit Tn  • Der Regler ist als PI-Regler realisiert. |         |        |        |  |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                |         |        |        |  |  |
| 1                                                                                        | 0 100 s | 0.01 s | REAL32 |  |  |

| Subindex 0x0A: Current Controller IQ Vp                                                |            |       |        |  |  |
|----------------------------------------------------------------------------------------|------------|-------|--------|--|--|
| Stromregler (q-Komponente): Verstärkung Vp  • Der Regler ist als PI-Regler realisiert. |            |       |        |  |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                              |            |       |        |  |  |
| 1                                                                                      | 0 1000 V/A | 1 V/A | REAL32 |  |  |

## 6.11 SLVCS - Sensorlose Vektorregelung für Synchronmotoren

.\_\_\_\_\_

| Subindex 0x0B: Current Controller IQ Tn                                                  |                 |                |          |
|------------------------------------------------------------------------------------------|-----------------|----------------|----------|
| Stromregler (q-Komponente): Nachstellzeit Tn  • Der Regler ist als PI-Regler realisiert. |                 |                |          |
| Skalierungsfaktor                                                                        | Einstellbereich | Voreinstellung | Datentyp |
| 1                                                                                        | 0 100 s         | 0.01 s         | REAL32   |

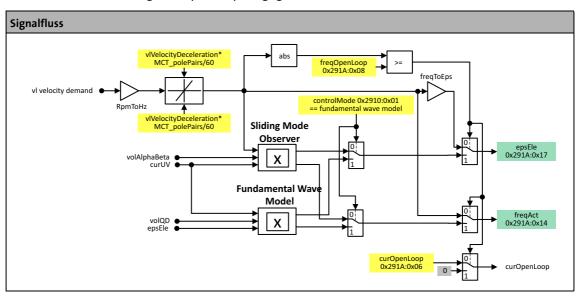
| Subindex 0x0C: Decoupling Vp   |                 |                |          |
|--------------------------------|-----------------|----------------|----------|
| Verstärkung Vp der Entkopplung |                 |                |          |
| Skalierungsfaktor              | Einstellbereich | Voreinstellung | Datentyp |
| 1                              | 0 2             | 0.9            | REAL32   |

| Subindex 0x10: curDOffset             |                 |                |          |
|---------------------------------------|-----------------|----------------|----------|
| Vorsteuerung des Feldschwäche-Reglers |                 |                |          |
| Skalierungsfaktor                     | Einstellbereich | Voreinstellung | Datentyp |
| 1.562500000000E-002                   | -200 200 A      | 0 A            | INT16    |

| Subindex 0x12: Motor Data Rotor Flux |                 |                |          |
|--------------------------------------|-----------------|----------------|----------|
| Sollfluss für Rotorflussmodell       |                 |                |          |
| Skalierungsfaktor                    | Einstellbereich | Voreinstellung | Datentyp |
| 1                                    | 0 1 Vs          | 0.6666 Vs      | REAL32   |

| Subindex 0x13: Motor Data Ld   |                 |                |          |
|--------------------------------|-----------------|----------------|----------|
| Statorinduktivität der D-Achse |                 |                |          |
| Skalierungsfaktor              | Einstellbereich | Voreinstellung | Datentyp |
| 1000                           | 0 1000 mH       | 0 mH           | REAL32   |

| Subindex 0x14: Motor Data Lq   |                 |                |          |
|--------------------------------|-----------------|----------------|----------|
| Statorinduktivität der Q-Achse |                 |                |          |
| Skalierungsfaktor              | Einstellbereich | Voreinstellung | Datentyp |
| 1000                           | 0 1000 mH       | 0 mH           | REAL32   |


------

## 6.11.1 Position-Geschwindigkeit-Beobachter

Für die Beobachtung der Istdrehzahl stehen das Grundwellenmodell und der Sliding Mode Observer zur Verfügung.

- Das Grundwellenmodell eignet sich für Anwendungen mit hohen Statorfrequenzen.
- Der Sliding Mode Observer eignet sich für niedrige Statorfrequenzen.
  - Vorteile: Sehr schnelles Einschwingen (z. B. auf eine noch drehende Maschine), einfache Parametrierung.
  - · Nachteil: Eher "unruhiger" Winkel.

Bei kleiner Drehzahl kann die aktuelle Drehzahl und die Position mit dem Position-Geschwindigkeit-Beobachter nicht ermittelt werden. Darum wird im Bereich von |freqSetp| < freqOpenLoop ein D-Stromvektor mit der Länge curOpenLoop vorgegeben, um damit die Maschine zu steuern.



[6-13] Übersicht Signalfluss Sensorlose Vektorregelung für Synchronmotoren (vereinfachte Darstellung)

6.11 SLVCS - Sensorlose Vektorregelung für Synchronmotoren

\_\_\_\_\_\_

## Beschreibung der Parameter

## 0x291A | 0x311A - Motor A/B Position Velocity Observer

| Sub.          | Name                   | Voreinstellung | Datentyp   |
|---------------|------------------------|----------------|------------|
| ▶ <u>0x01</u> | Motor Data Ls          | 500 mH         | REAL32     |
| ▶ <u>0x02</u> | Motor Data Rs          | 500 mOhm       | REAL32     |
| ▶ <u>0x03</u> | k                      | 100            | REAL32     |
| ▶ <u>0x04</u> | filter tau             | 0.1 s          | REAL32     |
| ▶ <u>0x05</u> | alignTime              | 0.1024 s       | UNSIGNED16 |
| ▶ <u>0x06</u> | curOpenLoop            | 10 A           | REAL32     |
| ▶ <u>0x07</u> | volEMFMin              | 10 V           | INT16      |
| ▶ <u>0x08</u> | freqOpenLoop           | 10 Hz          | REAL32     |
| ▶ <u>0x09</u> | Ке                     | 0.5 V/rad      | REAL32     |
| ▶ <u>0x0A</u> | Tracking Controller Vp | 2              | REAL32     |
| ▶ <u>0x0B</u> | Tracking Controller Tn | 0.005 s        | REAL32     |
| ▶ <u>0x0C</u> | Motor Data Ld          | 500 mH         | REAL32     |
| ▶ <u>0x0D</u> | Motor Data Lq          | 500 mH         | REAL32     |
| ▶ <u>0x0E</u> | freqSlopeOpenLoop      | 0 Hz/s         | REAL32     |

| Subindex 0x01: Motor Data Ls |                 |                |          |
|------------------------------|-----------------|----------------|----------|
| Statorinduktivität           |                 |                |          |
| Skalierungsfaktor            | Einstellbereich | Voreinstellung | Datentyp |
| 1000                         | 0 1000 mH       | 500 mH         | REAL32   |

| Subindex 0x02: Motor Data Rs |                 |                |          |
|------------------------------|-----------------|----------------|----------|
| Statorwiderstand             |                 |                |          |
| Skalierungsfaktor            | Einstellbereich | Voreinstellung | Datentyp |
| 1000                         | 0 50000 mOhm    | 500 mOhm       | REAL32   |

| Subindex 0x03: k                  |                 |                |          |
|-----------------------------------|-----------------|----------------|----------|
| k Faktor des Sliding Mode Reglers |                 |                |          |
| Skalierungsfaktor                 | Einstellbereich | Voreinstellung | Datentyp |
| 1                                 | 0 1000          | 100            | REAL32   |

| Subindex 0x04: filter tau                  |                 |                |          |  |
|--------------------------------------------|-----------------|----------------|----------|--|
| Zeitkonstante des Sliding Mode Beobachters |                 |                |          |  |
| Skalierungsfaktor                          | Einstellbereich | Voreinstellung | Datentyp |  |
| 1 01s 0.1s REAL32                          |                 |                |          |  |

| Subindex 0x05: alignTime                                                                 |                 |                |            |
|------------------------------------------------------------------------------------------|-----------------|----------------|------------|
| Motorausrichtzeit (nur wenn bei Reglerfreigabe ein Stillstand der Maschine erkannt wird) |                 |                |            |
| Skalierungsfaktor                                                                        | Einstellbereich | Voreinstellung | Datentyp   |
| 1.02400000000E-003                                                                       | 0 5.12 s        | 0.1024 s       | UNSIGNED16 |

## 6.11 SLVCS - Sensorlose Vektorregelung für Synchronmotoren

.\_\_\_\_\_

| Subindex 0x06: curOpenLoop       |                 |                |          |
|----------------------------------|-----------------|----------------|----------|
| Stromsollwert im open loop Modus |                 |                |          |
| Skalierungsfaktor                | Einstellbereich | Voreinstellung | Datentyp |
| 1                                | 0 200 A         | 10 A           | REAL32   |

| Subindex 0x07: volEMFMin                             |                 |                |          |
|------------------------------------------------------|-----------------|----------------|----------|
| Minimaler Maschinen-EMK für die Stillstandserkennung |                 |                |          |
| Skalierungsfaktor                                    | Einstellbereich | Voreinstellung | Datentyp |
| 6.250000000000E-002                                  | 0 500 V         | 10 V           | INT16    |

| Subindex 0x08: freqOpenLoop                  |                 |                |          |  |
|----------------------------------------------|-----------------|----------------|----------|--|
| Elektrische Frequenzschwelle open loop Modus |                 |                |          |  |
| Skalierungsfaktor                            | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                            | 0 2000 Hz       | 10 Hz          | REAL32   |  |

| Subindex 0x09: <b>Ke</b>                                                     |                 |                |          |  |
|------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Spannungskonstante (Stator Spitzenspannung pro elektrischer Geschwindigkeit) |                 |                |          |  |
| Skalierungsfaktor                                                            | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                            | 0 10 V/rad      | 0.5 V/rad      | REAL32   |  |

| Subindex 0x0A: Tracking Controller Vp                |                 |                |          |
|------------------------------------------------------|-----------------|----------------|----------|
| Nachführregler-Verstärkung Vp des Grundwellenmodells |                 |                |          |
| Skalierungsfaktor                                    | Einstellbereich | Voreinstellung | Datentyp |
| 1                                                    | 0 2000          | 2              | REAL32   |

| Subindex 0x0B: Tracking Controller Tn |                                                        |                |          |  |
|---------------------------------------|--------------------------------------------------------|----------------|----------|--|
| Nachführregler-Nachstellze            | Nachführregler-Nachstellzeit Tn des Grundwellenmodells |                |          |  |
| Skalierungsfaktor                     | Einstellbereich                                        | Voreinstellung | Datentyp |  |
| 1                                     | 0 2000 s                                               | 0.005 s        | REAL32   |  |

| Subindex 0x0C: Motor Data Ld |                                |                |          |  |  |
|------------------------------|--------------------------------|----------------|----------|--|--|
| Statorinduktivität der D-Ach | Statorinduktivität der D-Achse |                |          |  |  |
| Skalierungsfaktor            | Einstellbereich                | Voreinstellung | Datentyp |  |  |
| 1000                         | 0 1000 mH                      | 500 mH         | REAL32   |  |  |

| Subindex 0x0D: Motor Data Lq |                                |                |          |  |  |
|------------------------------|--------------------------------|----------------|----------|--|--|
| Statorinduktivität der Q-Ack | Statorinduktivität der Q-Achse |                |          |  |  |
| Skalierungsfaktor            | Einstellbereich                | Voreinstellung | Datentyp |  |  |
| 1000                         | 0 1000 mH                      | 500 mH         | REAL32   |  |  |

| Subindex 0x0E: freqSlopeOpenLoop                                                                     |              |        |        |  |
|------------------------------------------------------------------------------------------------------|--------------|--------|--------|--|
| Steigung der elektrischen Frequenz im open loop Modus (folgt direkt dem Eingang, wenn auf 0 gesetzt) |              |        |        |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                            |              |        |        |  |
| 1                                                                                                    | 0 10000 Hz/s | 0 Hz/s | REAL32 |  |

**BUCHER** hydraulics

6.12 VCS - Vektorregelung für Synchronmotoren

\_\_\_\_\_

## 6.12 VCS - Vektorregelung für Synchronmotoren

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name            | MOBILE |     |         |       |
|---------------|-----------------|--------|-----|---------|-------|
|               |                 | DCU    | PSU | DCU PSU | DCU S |
| <u>0x2918</u> | Motor VCS INV A | •      |     |         |       |
| <u>0x3118</u> | Motor VCS INV B | •      |     | •       |       |

Mögliche CiA402-Betriebsmodi mit dieser Regelungsart:

| CiA402-Betriebsmodus             | Regelungsart  |              |            |              |     |
|----------------------------------|---------------|--------------|------------|--------------|-----|
| (Mode of operation)              | <u>SLVFCI</u> | <u>SLVCI</u> | <u>VCI</u> | <u>SLVCS</u> | VCS |
| <u>Velocity Mode</u>             | •             | •            | •          | •            | •   |
| Profile Torque Mode              | -             | •            | •          | •*           | •   |
| Cyclic Synchronous Position Mode | -             | -            | •          | -            | •   |
| Generator Mode                   | •             | •            | •          | •            | •   |
| * nicht bei Drehzahlen um 0 rpm  |               |              |            |              |     |

Signalfluss Field **Application** DC Link Weakening curDOffset 0x2918:0x10 Controller Controller Controller curMrOffset **Position Drive Profile** Velocity Modulator Generator Controller М vl velocity demar current phase U 0x2810:0x05 frequency 0x2820:0x03 current phase V 0x2810:0x06 Inverter position 0x2820:0x02 temperature 0x2810:0x08 velocityAct Motor Feedback Plug : temperature 0x2820:0x01 Power **Calculation** curSActFiltered Application Controller: DC Link Controller: Field Weakening Controller: Links: **Applikationsregler** DC-Zwischenkreisregler <u>Feldschwächeregler</u> Position Controller: Power Calculation: **Drive Profile Generator** <u>Positionsregler</u> Leistungsberechnung Velocity Controller: Inverter Geschwindigkeitsregler

[6-14] Übersicht Signalfluss Sensorlose Vektorregelung für Synchronmotoren (vereinfachte Darstellung)

## 6.12 VCS - Vektorregelung für Synchronmotoren

\_\_\_\_\_

## Eingangsgrößen über Public CAN

| Name                 | Info                                                                                                                                                                                   | Weitere Informationen                                                     |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| setp_DcLinkVoltage   | Sollwert für DC-Zwischenkreisspannung                                                                                                                                                  | ▶ <u>Status der übergeordneten Steuerung</u>                              |
| setp_DcLinkTolerance | Dieser Wert wird zum Sollwert setp_DcLinkVoltage addiert bzw. davon subtrahiert, um den für ein Derating benötigten Maximal- und Minimalwert der DC-Zwischenkreisspannung zu erhalten. | <ul><li>▶ Sollwerte für Motor A</li><li>▶ Sollwerte für Motor B</li></ul> |
| setp_Speed           | Velocity Mode: Drehzahlsollwert Profile Torque Mode: Drehzahlgrenze für Drehzahlklammerung                                                                                             |                                                                           |
| setp_Torque          | Profile Torque Mode: Drehmomentsollwert                                                                                                                                                |                                                                           |

## Beschreibung der Parameter

## 0x2918 | 0x3118 - Motor A/B VCS

| Sub.          | Name                     | Voreinstellung | Datentyp |
|---------------|--------------------------|----------------|----------|
| ▶ <u>0x06</u> | Current Controller ID Vp | 1 V/A          | REAL32   |
| ▶ <u>0x07</u> | Current Controller ID Tn | 0.01 s         | REAL32   |
| ▶ <u>0x0A</u> | Current Controller IQ Vp | 1 V/A          | REAL32   |
| ▶ <u>0x0B</u> | Current Controller IQ Tn | 0.01 s         | REAL32   |
| ▶ <u>0x0C</u> | Decoupling Vp            | 0.9            | REAL32   |
| ▶ <u>0×10</u> | curDOffset               | 0 A            | INT16    |
| ▶ <u>0x12</u> | Motor Data Rotor Flux    | 0.6666 Vs      | REAL32   |
| ▶ <u>0x13</u> | Motor Data Ld            | 0 mH           | REAL32   |
| ▶ <u>0x14</u> | Motor Data Lq            | 0 mH           | REAL32   |

| Subindex 0x06: Current Controller ID Vp |                                                                                        |                |          |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------|----------------|----------|--|--|
|                                         | Stromregler (d-Komponente): Verstärkung Vp  • Der Regler ist als PI-Regler realisiert. |                |          |  |  |
| Skalierungsfaktor                       | Einstellbereich                                                                        | Voreinstellung | Datentyp |  |  |
| 1                                       | 0 1000 V/A                                                                             | 1 V/A          | REAL32   |  |  |

| Subindex 0x07: Current Controller ID Tn |                                                                                          |        |        |  |  |  |
|-----------------------------------------|------------------------------------------------------------------------------------------|--------|--------|--|--|--|
|                                         | Stromregler (d-Komponente): Nachstellzeit Tn  • Der Regler ist als PI-Regler realisiert. |        |        |  |  |  |
| Skalierungsfaktor                       | Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                |        |        |  |  |  |
| 1                                       | 0 100 s                                                                                  | 0.01 s | REAL32 |  |  |  |

| Subindex 0x0A: Current Controller IQ Vp |                                                                                        |                |          |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------|----------------|----------|--|--|
|                                         | Stromregler (q-Komponente): Verstärkung Vp  • Der Regler ist als PI-Regler realisiert. |                |          |  |  |
| Skalierungsfaktor                       | Einstellbereich                                                                        | Voreinstellung | Datentyp |  |  |
| 1                                       | 0 1000 V/A                                                                             | 1 V/A          | REAL32   |  |  |

## 6.12 VCS - Vektorregelung für Synchronmotoren

.\_\_\_\_\_

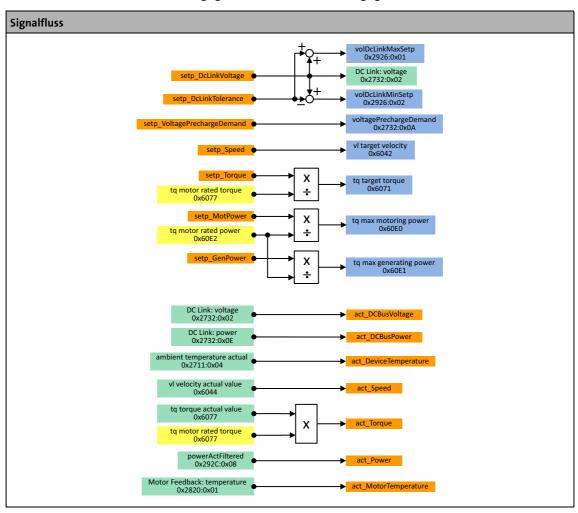
| Subindex 0x0B: Current Controller IQ Tn |                                                                                         |        |        |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------|--------|--------|--|--|
|                                         | Stromregler (q-Komponente): Nachstellzeit Tn • Der Regler ist als PI-Regler realisiert. |        |        |  |  |
| Skalierungsfaktor                       | Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                               |        |        |  |  |
| 1                                       | 0 100 s                                                                                 | 0.01 s | REAL32 |  |  |

| Subindex 0x0C: Decoupling Vp |                                                           |     |        |  |  |
|------------------------------|-----------------------------------------------------------|-----|--------|--|--|
| Verstärkung Vp der Entkopp   | Verstärkung Vp der Entkopplung                            |     |        |  |  |
| Skalierungsfaktor            | Skalierungsfaktor Einstellbereich Voreinstellung Datentyp |     |        |  |  |
| 1                            | 0 2                                                       | 0.9 | REAL32 |  |  |

| Subindex 0x10: curDOffset |                                       |                |          |  |  |
|---------------------------|---------------------------------------|----------------|----------|--|--|
| Vorsteuerung des Feldschw | Vorsteuerung des Feldschwäche-Reglers |                |          |  |  |
| Skalierungsfaktor         | Einstellbereich                       | Voreinstellung | Datentyp |  |  |
| 1.562500000000E-002       | -200 200 A                            | 0 A            | INT16    |  |  |

| Subindex 0x12: Motor Data Rotor Flux |                                |                |          |  |  |
|--------------------------------------|--------------------------------|----------------|----------|--|--|
| Sollfluss für Rotorflussmode         | Sollfluss für Rotorflussmodell |                |          |  |  |
| Skalierungsfaktor                    | Einstellbereich                | Voreinstellung | Datentyp |  |  |
| 1                                    | 0 1 Vs                         | 0.6666 Vs      | REAL32   |  |  |

| Subindex 0x13: Motor Data Ld |                                |                |          |  |  |
|------------------------------|--------------------------------|----------------|----------|--|--|
| Statorinduktivität der D-Ach | Statorinduktivität der D-Achse |                |          |  |  |
| Skalierungsfaktor            | Einstellbereich                | Voreinstellung | Datentyp |  |  |
| 1000                         | 0 1000 mH                      | 0 mH           | REAL32   |  |  |


| Subindex 0x14: Motor Data Lq |                                |                |          |  |  |
|------------------------------|--------------------------------|----------------|----------|--|--|
| Statorinduktivität der Q-Ach | Statorinduktivität der Q-Achse |                |          |  |  |
| Skalierungsfaktor            | Einstellbereich                | Voreinstellung | Datentyp |  |  |
| 1000                         | 0 1000 mH                      | 0 mH           | REAL32   |  |  |

6.13 Applikationsregler

\_\_\_\_\_

## 6.13 Applikationsregler

Im Applikationsregler werden die Sollwerte vom Public CAN verrechnet und über Private CAN an den Motor-Controller (MC) weitergegeben und wieder zurückgegeben.



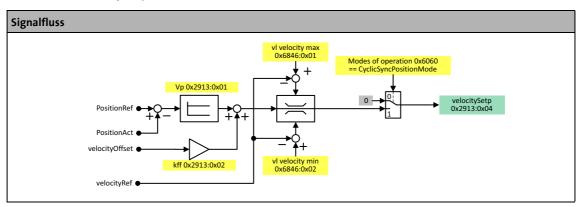
[6-15] Signalfluss Applikationsregler



## Hinweis!

Die Leistungslimitierung setp\_MotPower und setp\_GenPower sind erst ab Firmware R6.1 verfügbar.

## 6.14 Positionsregler


\_\_\_\_\_\_

## 6.14 Positionsregler

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                        | MOBILE |     |         |       |
|---------------|-----------------------------|--------|-----|---------|-------|
|               |                             | DCU    | PSU | DCU PSU | DCU S |
| <u>0x2913</u> | Motor PositionControl INV A | •      |     |         | •     |
| <u>0x3113</u> | Motor PositionControl INV B | •      |     | •       |       |

Der Positionsregler ist nur im Betriebsmodus "Cyclic Synchronous Position Mode" aktiv und gibt die Solldrehzahl *velocitySetp* vor.



[6-16] Signalfluss Positionsregler

## Beschreibung der Parameter

### 0x2913 | 0x3113 - Motor A/B Position Controller

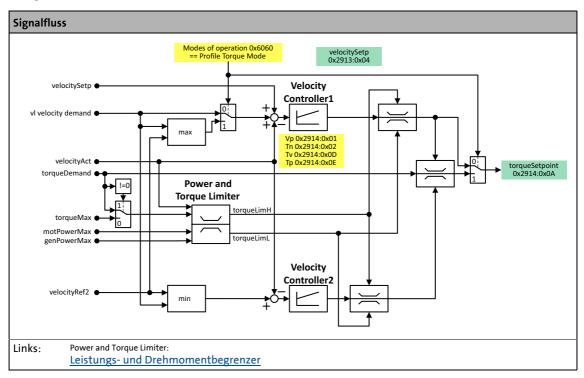
| Sub.          | Name | Voreinstellung    | Datentyp |  |
|---------------|------|-------------------|----------|--|
| ▶ <u>0x01</u> | Vp   | 0.3 (rev/min)/rad | REAL32   |  |
| ▶ <u>0x02</u> | Kff  | 0.9               | REAL32   |  |

| Subindex 0x01: Vp                                        |                                                                                        |                   |          |  |
|----------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------|----------|--|
| Lageregler: Verstärkung Vp • Der Regler ist als P-Regler | Lageregler: Verstärkung Vp  • Der Regler ist als P-Regler mit Vorsteuerung realisiert. |                   |          |  |
| Skalierungsfaktor                                        | Einstellbereich                                                                        | Voreinstellung    | Datentyp |  |
| 1                                                        | 0 1000 (rev/min)/rad                                                                   | 0.3 (rev/min)/rad | REAL32   |  |

| Subindex 0x02: Kff                                                                                       |                 |                |          |  |
|----------------------------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Lageregler: Verstärkung Kff für Vorsteuerung  • Der Regler ist als P-Regler mit Vorsteuerung realisiert. |                 |                |          |  |
| Skalierungsfaktor                                                                                        | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                                                        | 0 2             | 0.9            | REAL32   |  |

------

## 6.15 Geschwindigkeitsregler


In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                        | MOBILE |     |         |       |
|---------------|-----------------------------|--------|-----|---------|-------|
|               |                             | DCU    | PSU | DCU PSU | DCU S |
| 0x2914        | Motor VelocityControl INV A | •      |     |         | •     |
| <u>0x3114</u> | Motor VelocityControl INV B | •      |     | •       |       |

Im Betriebsmodus "Velocity Mode" wird die Solldrehzahl über vI velocity demand vorgegeben. Der *Velocity Controller1* übernimmt die Drehzahlregelung und gibt das Solldrehmoment *torqueSetpoint* vor.

Der in torqueDemand gesendete Drehmomentsollwert wirkt in den Betriebsarten "Velocity Mode", "Generator Mode" und "Cyclic Synchronous Position Mode" als Drehmomentbegrenzung.

Nur in den Betriebsmodi "Profile Torque Mode" und "Generator Mode" ist der *Velocity Controller2* aktiv und realisiert dann die untere Drehzahlklammer. An den Eingängen vI velocity demand und velocityRef2 ist der größere Wert die obere Drehzahlgrenze und der kleinere Wert die untere Drehzahlgrenze.



[6-17] Signalfluss Geschwindigkeitsregler

## 6.15 Geschwindigkeitsregler

-----

## Beschreibung der Parameter

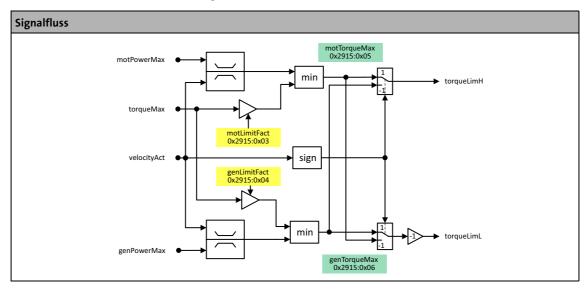
## 0x2914 | 0x3114 - Motor A/B Velocity Controller

| Sub.          | Name | Voreinstellung   | Datentyp |
|---------------|------|------------------|----------|
| ▶ <u>0x01</u> | Vp   | 0.1 Nm/(rev/min) | REAL32   |
| ▶ <u>0x02</u> | Tn   | 0.5 s            | REAL32   |
| ▶ <u>0x0D</u> | Tv   | 0 s              | REAL32   |
| ▶ <u>0x0E</u> | Тр   | 0.001 s          | REAL32   |

| Subindex 0x01: Vp |                                                                                     |                  |          |  |
|-------------------|-------------------------------------------------------------------------------------|------------------|----------|--|
|                   | Geschwindigkeitsregler: Verstärkung Vp  • Der Regler ist als PID-Regler realisiert. |                  |          |  |
| Skalierungsfaktor | Einstellbereich                                                                     | Voreinstellung   | Datentyp |  |
| 1                 | 0 1000 Nm/(rev/min)                                                                 | 0.1 Nm/(rev/min) | REAL32   |  |

| Subindex 0x02: Tn                                                                     |         |       |        |  |
|---------------------------------------------------------------------------------------|---------|-------|--------|--|
| Geschwindigkeitsregler: Nachstellzeit Tn  • Der Regler ist als PID-Regler realisiert. |         |       |        |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                             |         |       |        |  |
| 1                                                                                     | 0 100 s | 0.5 s | REAL32 |  |

| Subindex 0x0D: Tv                                                                   |                 |                |          |  |
|-------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Geschwindigkeitsregler: Vorhaltezeit Tv • Der Regler ist als PID-Regler realisiert. |                 |                |          |  |
| Skalierungsfaktor                                                                   | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                                   | 0 1 s           | 0 s            | REAL32   |  |


| Subindex 0x0E: Tp                                                                                |                 |                |          |  |
|--------------------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Geschwindigkeitsregler: Parasitäre Zeitkonstante Tp  • Der Regler ist als PID-Regler realisiert. |                 |                |          |  |
| Skalierungsfaktor                                                                                | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                                                | 0.000256 1 s    | 0.001 s        | REAL32   |  |

-----

## 6.16 Leistungs- und Drehmomentbegrenzer

Die Sollwerte motPowerMax und genPowerMax wirken als motorische bzw. generatorische Leistungsgrenzen. Aus diesen wird anhand der aktuellen Drehzahl und der aktuellen absoluten Drehmomentgrenze die motorische bzw. generatorische Drehmomentgrenze motTorqueMax bzw. genTorqueMax berechnet.

Die Leistungs- und Drehmomentbegrenzung funktioniert nicht in allen Betriebsmodi. Im Betriebsmodus "Generator Mode" und bei der Regelungsart SLVFCI kann die Leistung bzw. das Drehmoment nur über den maximalen Strom begrenzt werden.



[6-18] Signalfluss Leistungs- und Drehmomentbegrenzer

### Beschreibung der Parameter

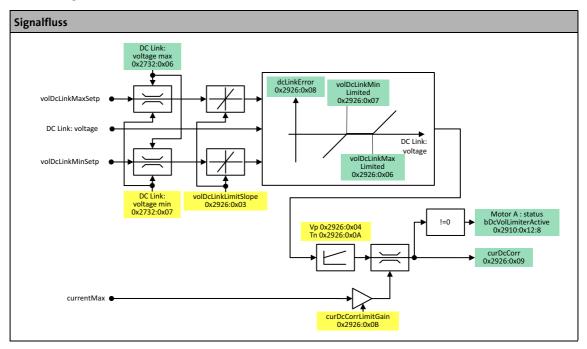
#### 0x2915 | 0x3115 - Motor A/B Power and Torque Limiter

| Sub.          | Name           | Voreinstellung | Datentyp |
|---------------|----------------|----------------|----------|
| ▶ <u>0x03</u> | motLimitFactor | 1              | REAL32   |
| ▶ <u>0x04</u> | genLimitFactor | 1              | REAL32   |

| Subindex 0x03: motLimitFactor                             |     |   |        |  |
|-----------------------------------------------------------|-----|---|--------|--|
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp |     |   |        |  |
| 1                                                         | 0 1 | 1 | REAL32 |  |

| Subindex 0x04: genLimitFactor                             |     |   |        |  |
|-----------------------------------------------------------|-----|---|--------|--|
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp |     |   |        |  |
| 1                                                         | 0 1 | 1 | REAL32 |  |

140 BUCHER hydraulics 300-I-9052004-DE-04/09.2023


\_\_\_\_\_

## 6.17 DC-Zwischenkreisregler

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                           | MOBILE |     |         |       |
|---------------|--------------------------------|--------|-----|---------|-------|
|               |                                | DCU    | PSU | DCU PSU | DCU S |
| <u>0x2926</u> | Motor DC Link Controller INV A | •      |     |         | •     |
| <u>0x3126</u> | Motor DC Link Controller INV B | •      |     | •       |       |

Der DC-Zwischenkreisregler berechnet abhängig von den Sollwerten für die maximale und minimale Zwischenkreisspannung einen Korrekturstrom. Die jeweils aktive Motorregelung reagiert anhand dieses Korrekturstromes so, dass die Zwischenkreisspannung sich in Richtung des erlaubten Bereiches bewegt.



[6-19] Signalfluss DC-Zwischenkreisregler

141

## 6.17 DC-Zwischenkreisregler

------

## Beschreibung der Parameter



## Stop!

Beim Bremsen des Motors (Antriebsdrehmoment < 0) kann die HV-Zwischenkreisspannung auf einen unzulässig hohen Wert ansteigen und andere Geräte im HV-Zwischenkreis beschädigen.

• Den DC-Zwischenkreisregler korrekt parametrieren, damit die HV-Zwischenkreisspannung auf den max. zulässigen Wert begrenzt wird.

#### 0x2926 | 0x3126 - Motor A/B DC Link Controller

| Sub.          | Name                | Voreinstellung | Datentyp |
|---------------|---------------------|----------------|----------|
| ▶ <u>0x03</u> | volDcLinkLimitSlope | 1000 V/s       | REAL32   |
| ▶ <u>0x04</u> | Vp                  | 1 A/V          | REAL32   |
| ▶ <u>0x0A</u> | Tn                  | 0.1 s          | REAL32   |
| ▶ <u>0x0B</u> | curDcCorrLimitGain  | 1              | REAL32   |

#### Subindex 0x03: volDcLinkLimitSlope

Rampe für die maximale Änderung der Zwischenkreisspannungsgrenzen

• Bei Einstellung "0" ist keine Rampenbegrenzung aktiv und die Zwischenkreisspannungsgrenzen folgen direkt dem Sollwert.

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp |
|-------------------|-----------------|----------------|----------|
| 1                 | 0 100000 V/s    | 1000 V/s       | REAL32   |

## Subindex 0x04: Vp

DC-Zwischenkreisregler: Verstärkung Vp

- Der Regler ist als PI-Regler mit Totband realisiert.
- Der Regler berechnet abhängig von den Sollwerten für die maximale und minimale Zwischenkreisspannung einen Korrekturstrom. Die jeweils aktive Motorregelung reagiert anhand dieses Korrekturstromes so, dass die Zwischenkreisspannung sich in Richtung des erlaubten Bereiches bewegt.

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp |
|-------------------|-----------------|----------------|----------|
| 1                 | 0 100 A/V       | 1 A/V          | REAL32   |

| Subindex 0x0A: Tn                                                                                |         |       |        |  |
|--------------------------------------------------------------------------------------------------|---------|-------|--------|--|
| DC-Zwischenkreisregler: Nachstellzeit Tn  • Der Regler ist als PI-Regler mit Totband realisiert. |         |       |        |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                        |         |       |        |  |
| 1                                                                                                | 0 100 s | 0.1 s | REAL32 |  |

| Subindex 0x0B: curDcCorrLimitGain |                                                   |                |          |  |  |
|-----------------------------------|---------------------------------------------------|----------------|----------|--|--|
| Stromlimitierungsfaktor de        | Stromlimitierungsfaktor der Zwischenkreisregelung |                |          |  |  |
| Skalierungsfaktor                 | Einstellbereich                                   | Voreinstellung | Datentyp |  |  |
| 1                                 | 0.1 1.1                                           | 1              | REAL32   |  |  |

\_\_\_\_\_

### 6.18 Feldschwächeregler

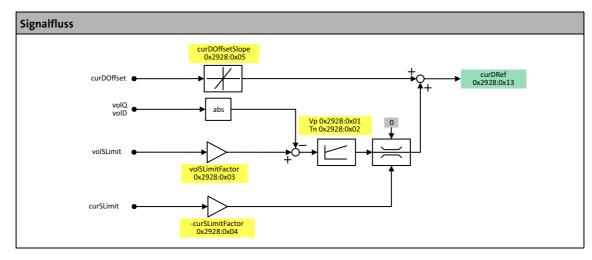
In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                                   | MOBILE |     |         |       |
|---------------|----------------------------------------|--------|-----|---------|-------|
|               |                                        | DCU    | PSU | DCU PSU | DCU S |
| <u>0x2928</u> | Motor Field Weakening Controller INV A | •      |     |         | •     |
| <u>0x3128</u> | Motor Field Weakening Controller INV B | •      |     | •       |       |

Der Feldschwächeregler sorgt dafür, dass auch bei begrenzter Zwischenkreisspannung die gewünschte Drehzahl möglich ist. Dazu wird das Feld bei einem Synchronmotor mit negativem D-Strom bzw. bei einem Asynchronmotor mit kleinerem Magnetisierungsstrom geschwächt. Als Resultat ist mit kleinerer Statorspannung die gleiche Drehzahl erreichbar.

Der Motor-Controller signalisiert über das Bit 8 des Drive-Profile-Parameters "Drive Profile Inverter A/B statusword" (INV A: Objekt 0x6041, INV B: 0x6841), wenn er sich im Feldschwächebetrieb befindet.




## Hinweis!

Damit keine Überspannungen im Zwischenkreis auftreten, muss verhindert werden, dass die Motorregelung im feldgeschwächten Betrieb unterbrochen wird. Daher wird die Zustandsmaschine des Inverters solange im Zustand "Fault Reaction Active" gehalten, wenn ein Ausschaltbefehl oder ein Fehler ansteht, bis die Drehzahl der Maschine unter die Feldschwäche-Drehzahl gefallen ist.

Der Motor-Controller geht in diesem Fall in den Zustand "Fault Reaction" und regelt das Drehmoment auf 0, während die Feldschwächung unverändert weiter aktiv bleibt. Nach Abfallen der Statorspannung und Abbau der Feldschwächung auf 0 erfolgt ein Wechsel vom Zustand "Fault Reaction" in den Zustand "Fault". Der Motor-Controller setzt eine Fehlermeldung ab.

Nur bei den folgenden Fehlern wird sofort die Endstufe abgeschaltet und der Motor-Controller wechsel sofort in den Zustand "Fault":

- Kurzschluss/Überstrom (HW- und SW-Überwachung)
- Überspannung Zwischenkreis (HW- und SW-Überwachung)



143

[6-20] Signalfluss Feldschwächeregler

## 6.18 Feldschwächeregler

\_\_\_\_\_

## Beschreibung der Parameter

## 0x2928 | 0x3128 - Motor A/B Field Weakening Controller

| Sub.          | Name            | Voreinstellung | Datentyp |
|---------------|-----------------|----------------|----------|
| ▶ <u>0x01</u> | Vp              | 0 A/V          | REAL32   |
| ▶ <u>0x02</u> | Tn              | 0 s            | REAL32   |
| ▶ <u>0x03</u> | volSLimitFactor | 0.9            | REAL32   |
| ▶ <u>0x04</u> | curSLimitFactor | 0.6            | REAL32   |
| ▶ <u>0x05</u> | curDOffsetSlope | 1000 A/s       | REAL32   |

| Subindex 0x01: Vp                                                              |                 |                |          |  |
|--------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Feldschwächeregler: Verstärkung Vp  • Der Regler ist als PI-Regler realisiert. |                 |                |          |  |
| Skalierungsfaktor                                                              | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                                              | 0 1000 A/V      | 0 A/V          | REAL32   |  |

| Subindex 0x02: Tn |                                                                                  |                |          |  |  |
|-------------------|----------------------------------------------------------------------------------|----------------|----------|--|--|
|                   | Feldschwächeregler: Nachstellzeit Tn  • Der Regler ist als PI-Regler realisiert. |                |          |  |  |
| Skalierungsfaktor | Einstellbereich                                                                  | Voreinstellung | Datentyp |  |  |
| 1                 | 0 100 s                                                                          | 0 s            | REAL32   |  |  |

| Subindex 0x03: volSLimitFactor                            |                                                                                                                                                                                                        |     |        |  |  |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|--|--|
|                                                           | Mit diesem Faktor kann bestimmt werden, wieviel von der aktuell maximal möglichen Statorspannung, welche durch die Zwischenkreisspannung und die Schaltfrequenz definiert ist, ausgenutzt werden soll. |     |        |  |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp |                                                                                                                                                                                                        |     |        |  |  |
| 1                                                         | 0 1                                                                                                                                                                                                    | 0.9 | REAL32 |  |  |

| Subindex 0x04: curSLimitFactor             |                                                                                                                          |     |        |  |  |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----|--------|--|--|
| Mit diesem Faktor kann bes<br>werden soll. | Mit diesem Faktor kann bestimmt werden, wieviel von dem maximal möglichen Statorstrom als Feldstrom genutzt werden soll. |     |        |  |  |
| Skalierungsfaktor                          | Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                                                |     |        |  |  |
| 1                                          | 0 1                                                                                                                      | 0.6 | REAL32 |  |  |

| Subindex 0x05: curDOffsetSlope |                      |                |          |
|--------------------------------|----------------------|----------------|----------|
| Skalierungsfaktor              | Einstellbereich      | Voreinstellung | Datentyp |
| 1                              | 0 3.40282347E+38 A/s | 1000 A/s       | REAL32   |

\_\_\_\_\_\_

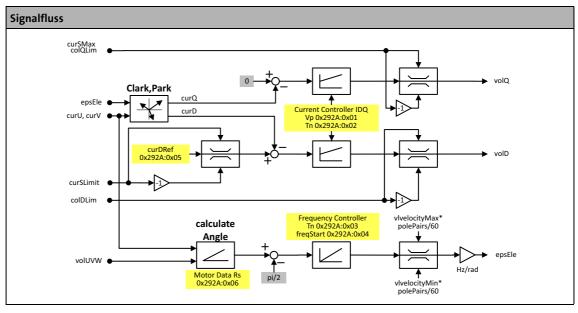
### 6.19 Fangschaltung

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                               | MOBILE |     |         |       |
|---------------|------------------------------------|--------|-----|---------|-------|
|               |                                    | DCU    | PSU | DCU PSU | DCU S |
| <u>0x292A</u> | Motor Flying Restart Circuit INV A | •      |     |         | •     |
| <u>0x312A</u> | Motor Flying Restart Circuit INV B | •      |     | •       |       |

Bevor mit einer sensorlosen Regelungsart (SLVFCI, SLVCI) möglichst ruckfrei auf einen schon drehenden Asynchronmotor aufgeschaltet werden kann, muss dessen Drehzahl ermittelt werden. Dazu kann vor dem Aktivieren der sensorlosen Regelung eine Fangschaltung ausgeführt werden, welche die Drehzahl schätzt.




## Hinweis!

Die Fangschaltung hat folgende Einschränkungen:

- Die Startfrequenz darf nicht kleiner als die aktuelle Frequenz der Maschine sein.
- Die Startfrequenz muss das richtige Vorzeichen haben.
- Eine Restremanenz im Rotor der Maschine kann das Verfahren stören.
- Es wird nicht geprüft, ob der Algorithmus konvergiert hat. Nach der eingestellten Timeout-Zeit wird zur eigentlichen Regelung umgeschaltet.

## Fangschaltung aktivieren

Die Aktivierung der Fangschaltung erfolgt über Bit 14 des Parameters "control mode" (Objekt 0x2910:0x01 bzw. 0x3110:0x01 für DCU B). ▶ Übersicht der Regelungsarten



145

[6-21] Signalfluss Fangschaltung

# 6.19 Fangschaltung

------

# Beschreibung der Parameter

## 0x292A | 0x312A - Motor A/B Flying Restart Circuit

| Sub.          | Name                      | Voreinstellung | Datentyp   |
|---------------|---------------------------|----------------|------------|
| ▶ <u>0x01</u> | Current Controller IDQ Vp | 1 V/A          | REAL32     |
| ▶ <u>0x02</u> | Current Controller IDQ Tn | 0.1 s          | REAL32     |
| ▶ <u>0x03</u> | Frequency Controller Tn   | 0.1 s          | REAL32     |
| ▶ <u>0x04</u> | freqStart                 | 0 Hz           | REAL32     |
| ▶ <u>0x05</u> | curDRef                   | 5 A            | REAL32     |
| ▶ <u>0x06</u> | Motor Data Rs             | 500 mOhm       | REAL32     |
| ▶ <u>0x07</u> | timeout time              | 3.072 s        | UNSIGNED16 |

| Subindex 0x01: Current Controller IDQ Vp                                                     |            |       |        |  |
|----------------------------------------------------------------------------------------------|------------|-------|--------|--|
| Stromregler (d- und q-Komponente): Verstärkung Vp • Der Regler ist als PI-Regler realisiert. |            |       |        |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                    |            |       |        |  |
| 1                                                                                            | 0 1000 V/A | 1 V/A | REAL32 |  |

| Subindex 0x02: Current Controller IDQ Tn                                                       |         |       |        |  |
|------------------------------------------------------------------------------------------------|---------|-------|--------|--|
| Stromregler (d- und q-Komponente): Nachstellzeit Tn • Der Regler ist als PI-Regler realisiert. |         |       |        |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                      |         |       |        |  |
| 1                                                                                              | 0 100 s | 0.1 s | REAL32 |  |

| Subindex 0x03: Frequency Controller Tn                                     |                 |                |          |  |  |
|----------------------------------------------------------------------------|-----------------|----------------|----------|--|--|
| Frequenzregler: Nachstellzeit Tn • Der Regler ist als I-Regler realisiert. |                 |                |          |  |  |
| Skalierungsfaktor                                                          | Einstellbereich | Voreinstellung | Datentyp |  |  |
| 1                                                                          | 0 100 s         | 0.1 s          | REAL32   |  |  |

| Subindex 0x04: freqStart                                                                                                                                                      |                 |                |          |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------|--|
| Startfrequenz für Fangschaltung  • Die Startfrequenz darf nicht kleiner als die aktuelle Frequenz der Maschine sein.  • Die Startfrequenz muss das richtige Vorzeichen haben. |                 |                |          |  |
| Skalierungsfaktor                                                                                                                                                             | Finstellhereich | Voreinstellung | Datentyn |  |

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp |
|-------------------|-----------------|----------------|----------|
| 1                 | -2000 2000 Hz   | 0 Hz           | REAL32   |
|                   |                 |                |          |

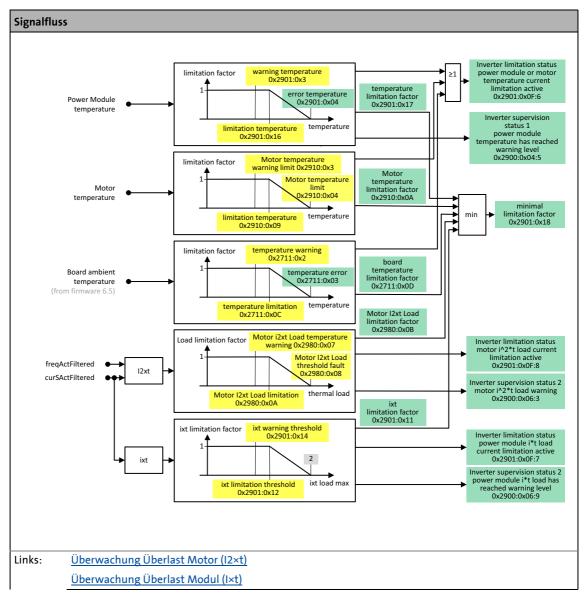
| Subindex 0x05: curDRef                     |                 |                |          |  |  |
|--------------------------------------------|-----------------|----------------|----------|--|--|
| Sollstrom (d-Komponente) für Fangschaltung |                 |                |          |  |  |
| Skalierungsfaktor                          | Einstellbereich | Voreinstellung | Datentyp |  |  |
| 1                                          | 0 200 A         | 5 A            | REAL32   |  |  |

| Subindex 0x06: Motor Data Rs                              |                 |                |          |  |
|-----------------------------------------------------------|-----------------|----------------|----------|--|
| Motor-Ständerwiderstand                                   |                 |                |          |  |
| Skalierungsfaktor                                         | Einstellbereich | Voreinstellung | Datentyp |  |
| 1000         0 50000 mOhm         500 mOhm         REAL32 |                 |                |          |  |

# 6.19 Fangschaltung

-----

| Subindex 0x07: timeout time                                                   |                 |                |            |  |
|-------------------------------------------------------------------------------|-----------------|----------------|------------|--|
| Nach der hier eingestellten Zeit wird zur eigentlichen Regelung umgeschaltet. |                 |                |            |  |
| Skalierungsfaktor                                                             | Einstellbereich | Voreinstellung | Datentyp   |  |
| 1.02400000000E-003                                                            | 0.512 10.24 s   | 3.072 s        | UNSIGNED16 |  |


------

# 6.20 Inverter

Die Fehler-, Warn- und Limitierungsschwellen sind grundsätzlich parametrierbar, sofern sie nicht für den Geräteschutz fest eingestellt sind (z.B. error threshold der i×t-Überwachung beim Leistungsteil).

- Überschreitung einer Fehlerschwelle: Der Inverter wird abgeschaltet und der Fehler wird im <u>MC-Statuswort 1</u> oder <u>MC-Statuswort 2</u> angezeigt.
- Überschreitung einer Warnschwelle: Der Inverter läuft weiter und die Warnung wird im MC-Statuswort 1 oder MC-Statuswort 2 angezeigt.
- Überschreitung einer Limitierungsschwelle: Der maximal mögliche Ausgangsstrom current-Max wird linear reduziert. Dies wird im Limitation Status und in Bit 11 des Drive-Profile-Parameter "Drive Profile Inverter A/B statusword" (INV A: Objekt 0x6041, INV B: 0x6841) angezeigt.

Das Blockschaltbild zeigt den Zusammenhang und die Wirkungsweise der verschiedenen Überwachungen und Limitierungen im Inverter.



[6-22] Signalfluss Inverter

6.20 Inverter

-----

#### Beschreibung der Parameter

#### 0x2901 | 0x3101 - Inverter A/B

| Sub.          | Name                     | Voreinstellung | Datentyp   |
|---------------|--------------------------|----------------|------------|
| ▶ <u>0x01</u> | itc config               | 0x00DF         | UNSIGNED16 |
| ▶ <u>0x02</u> | option config            | 0x0000         | UNSIGNED16 |
| ▶ <u>0x03</u> | warning temperature      | 95 °C          | INT16      |
| ▶ <u>0x07</u> | switching frequency      | 1              | UNSIGNED16 |
| ▶ <u>0x12</u> | ixt limitation threshold | 0              | INT32      |
| ▶ <u>0x14</u> | ixt warning threshold    | 0              | INT32      |
| ▶ <u>0x16</u> | limitation temperature   | 0 °C           | INT16      |

#### Subindex 0x01: itc config

Konfiguration für Inverter-Test (Bitwert 1 = Test durchführen):

Bit 0: Initialisierung Zeitstempel

Bit 1: Kalibrierung Strom-Offset für Phasen U/V/W

Bit 2: Überprüfung auf gültige DC-Zwischenkreisspannung

Bit 3: Laden der Bootstrap-Kondensatoren

Bit 4: Kalibrierung Resolver-Phase und -Offset

Bit 5: Kalibrierung Resolver-Amplitude

Bit 6: Verbindungstest Motor (Gefahr eines Geräteschadens bei Deaktivierung)

Bit 7 ... Bit 15: reserviert

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0x0000 0x00FF   | 0x00DF         | UNSIGNED16 |

#### Subindex 0x02: option config

# MOBILE DCU

Konfiguration (Bitwert 0 = nein, 1 = ja):

Bit 0: Fehler auslösen, wenn anderer Inverter Fehler meldet.

Bit 1 ... 2: Steuerung anderer Inverter:

- 0: Den eigenen Inverterausgang verwenden
- 1: Die Ausgänge des Velocity Controller und DC Link Controller des anderen Inverters verwenden (2 x 3-Phasenregelung)
- 2: Die Ausgänge des Modulators des anderen Inverters verwenden (6-Phasenregelung)
- 3: reserviert

Bit 3: Schaltrichtung der PWM-Signale des Inverters invertieren

Bit 4 ... Bit 15: reserviert

#### MOBILE DCU PSU

Konfiguration (Bitwert 0 = nein, 1 = ja):

Bit 0: Fehler auslösen, wenn anderer Inverter Fehler meldet.

Bit 1 ... Bit 2: reserviert

Bit 3: Schaltrichtung der PWM-Signale des Inverters invertieren

Bit 4 ... Bit 15: reserviert

#### MOBILE DCU S

Konfiguration (Bitwert 0 = nein, 1 = ja):

Bit 0 ... Bit 2: reserviert

Bit 3: Schaltrichtung der PWM-Signale des Inverters invertieren

Bit 4 ... Bit 15: reserviert

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0x0000 0x000F   | 0x0000         | UNSIGNED16 |

#### 6.20 Inverter

-----

#### Subindex 0x03: warning temperature

Warnschwelle für Temperaturüberwachung des Leistungsteils

- Wird die hier eingestellte Schwelle erreicht, wird im MC-Statuswort 1 das Warnungsbit 5 gesetzt.
- Die Warnschwelle hat eine Hysterese von 5 °C.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 | 0 150 °C        | 95 °C          | INT16    |

### Subindex 0x07: switching frequency

#### Schaltfrequenz des Wechselrichters:

- 0 = 16 kHz, auto ("auto" = Anpassung der Schaltfrequenz in Abhängigkeit des Stroms und der Statorfrequenz)
- 1 = 8 kHz, auto
- 2 = 4 kHz, auto
- 3 = 16 kHz, fest
- 4 = 8 kHz, fest
- 5 = 4 kHz, fest
- 6 = 2 kHz, fest

7 = 16 kHz, fest, VAC (für Applikation "Steckdose" - mit einem höheren Dauerstrom aber geringerer Überlastfähigkeit)

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp   |
|-------------------|-----------------|----------------|------------|
| 1                 | 0 7             | 1              | UNSIGNED16 |

#### Subindex 0x12: ixt limitation threshold

Schwelle zur Begrenzung der ixt-Auslastung des Leistungsteils

- Ab der Schwelle bis zum Maximalwert wird der Ausgangsstrom auf 0 reduziert.
- Bei Wert 0 ist die Begrenzung deaktiviert.

| Skalierungsfaktor   | Einstellbereich | Voreinstellung | Datentyp |
|---------------------|-----------------|----------------|----------|
| 2.980232238770E-008 | 0 1.964999      | 0              | INT32    |

#### Subindex 0x14: ixt warning threshold

Warnschwelle für die ixt-Auslastung des Leistungsteils.

• Bei Wert 0 ist die Warnung deaktiviert.

| Skalierungsfaktor   | Einstellbereich | Voreinstellung | Datentyp |
|---------------------|-----------------|----------------|----------|
| 1.862645149231E-009 | 0 2.000000      | 0              | INT32    |

### Subindex 0x16: limitation temperature

Begrenzung der Temperatur des Leistungsteils

- Ab der Schwelle bis zum Maximalwert wird der Ausgangsstrom auf 0 reduziert.
- Bei Wert 0 ist die Begrenzung deaktiviert.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 | 0 150 °C        | 0 °C           | INT16    |

#### 6.20 Inverter

\_\_\_\_\_

#### 0x2910 | 0x3110 - Motor A/B

| Sub.          | Name                         | Voreinstellung | Datentyp |
|---------------|------------------------------|----------------|----------|
| ▶ <u>0x03</u> | temperature warning limit    | 75 °C          | INT16    |
| ▶ <u>0x04</u> | temperature error limit      | 85 °C          | INT16    |
| ▶ <u>0x09</u> | temperature limitation limit | 0 °C           | INT16    |

#### Subindex 0x03: temperature warning limit

Warnschwelle für Temperaturüberwachung des Motors

- Wird die hier eingestellte Schwelle erreicht, wird im MC-Statuswort 1 das Warnungsbit 15 gesetzt.
- $\bullet$  Die Warnschwelle hat eine Hysterese von 5 °C.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 | 0 350 °C        | 75 °C          | INT16    |

## Subindex 0x04: temperature error limit

Fehlerschwelle für Temperaturüberwachung des Motors

- Wird die hier eingestellte Schwelle erreicht, wird im MC-Statuswort 1 das Fehlerbit 16 gesetzt.
- Die Fehlerschwelle hat eine Hysterese von 5 °C.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 | 0 350 °C        | 85 °C          | INT16    |

#### Subindex 0x09: temperature limitation limit

Schwelle für Motortemperaturbegrenzung

- Ab der Schwelle bis zum Maximalwert wird der Ausgangsstrom auf 0 reduziert.
- Bei Wert 0 ist die Begrenzung deaktiviert.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 | 0 350 °C        | 0 °C           | INT16    |

#### 6.20 Inverter

------

### 0x2980 | 0x3180 - Motor A/B I2xt Load

| Sub.          | Name                 | Voreinstellung | Datentyp |
|---------------|----------------------|----------------|----------|
| ▶ <u>0x07</u> | threshold warning    | 0              | REAL32   |
| ▶ <u>0x08</u> | threshold fault      | 0              | REAL32   |
| ▶ <u>0x0A</u> | threshold limitation | 0              | REAL32   |

#### Subindex 0x07: threshold warning

Warnschwelle für die Überwachung der Motorauslastung

- Wird die hier eingestellte Schwelle erreicht, wird im MC-Statuswort 2 das Warnungsbit 3 gesetzt.
- Bei Einstellung "0" ist die Überwachung deaktiviert und es wird keine Warnung ausgegeben.

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp |
|-------------------|-----------------|----------------|----------|
| 1                 | 0 2             | 0              | REAL32   |

#### Subindex 0x08: threshold fault

Fehlerschwelle für die Überwachung der Motorauslastung

- Wird die hier eingestellte Schwelle erreicht, wird im MC-Statuswort 2 das Fehlerbit 4 gesetzt.
- Bei Einstellung "0" ist die Überwachung deaktiviert und es wird kein Fehler ausgegeben.

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp |  |
|-------------------|-----------------|----------------|----------|--|
| 1                 | 0 2             | 0              | REAL32   |  |

#### Subindex 0x0A: threshold limitation

Schwelle der thermischen Motorlastbegrenzung (empfohlener Wert ist 0.8)

- Ab der Schwelle bis zur Fehlerschwelle wird der Ausgangsstrom auf 0 reduziert.
- Bei Einstellung "0" ist die Begrenzung deaktiviert.

| Skalierungsfaktor | Einstellbereich Voreinstellung |   | Datentyp |
|-------------------|--------------------------------|---|----------|
| 1                 | 0 2                            | 0 | REAL32   |

\_\_\_\_\_

## 6.21 Überwachung Überlast Motor (I2×t)

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                  | MOBILE |     |         |       |
|---------------|-----------------------|--------|-----|---------|-------|
|               |                       | DCU    | PSU | DCU PSU | DCU S |
| <u>0x2980</u> | Motor I2×t Load INV A | •      |     |         | •     |
| <u>0x3180</u> | Motor I2×t Load INV B | •      |     | •       |       |

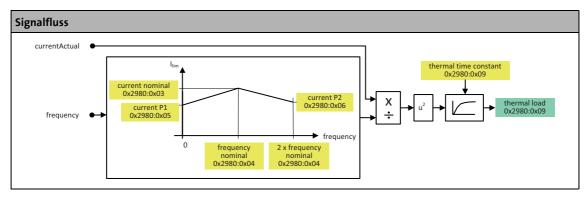
Diese Überwachung verhindert die thermische Überlastung des Motors, indem aus den erfassten Motorströmen anhand eines mathematischen Modells die thermische Motorauslastung berechnet und bei andauernder Überlast der weitere Betrieb unterbrochen wird.



### Stop!

Die Überwachung der Motorauslastung (i²xt) ist kein Motorvollschutz!

Da die im thermischen Modell berechnete Motorauslastung nach Netzschalten verloren geht, lassen sich u. a. folgende Betriebszustände nicht korrekt erfassen:


- Wiedereinschalten (nach Netzschalten) bei einem bereits stark erwärmten Motor.
- Veränderung der Kühlungsbedingungen (z. B. Kühlluftstrom unterbrochen oder zu warm).

Für einen Motorvollschutz sind zusätzliche Maßnahmen erforderlich, z. B. die Auswertung von direkt in der Wicklung befindlichen Temperatursensoren oder die Verwendung von Thermokontakten.

Das Modell umfasst im Wesentlichen die Kupferverluste im Stator, welche bei konstantem Kupferwiderstand quadratisch mit dem Strom ansteigen. Als Referenzgröße dient der thermische Maximalstrom des Motors, mit dem der Motor bei einer gegebenen Kühlung dauernd belastet werden kann. Zur Festlegung dieses Wertes muss die maximal mögliche Umgebungstemperatur berücksichtigt werden.

In vielen Anwendungen ist die Kühlung des Motors drehzahlabhängig, sei dies durch Kühlung mit einer Eigenbelüftung oder durch Fahrtwind.

- Die beiden Eckpunkte I<sub>P1</sub> und I<sub>P2</sub> ermöglichen die Nachbildung einer drehzahlabhängigen Kühlung.
- Ist die Kühlung unabhängig von der Drehzahl, wie z. B. bei Wasserkühlung, dann sind die zwei Ströme I<sub>P1</sub> und I<sub>P2</sub> identisch zum Motor-Bemessungsstrom I<sub>N</sub> einzustellen.



[6-23] Signalfluss Motorüberlastüberwachung (I2×t)

6.21 Überwachung Überlast Motor (I2×t)

\_\_\_\_\_

# Beschreibung der Parameter

## 0x2980 | 0x3180 - Motor A/B I2xt Load

| Sub.          | Name                  | Voreinstellung | Datentyp |
|---------------|-----------------------|----------------|----------|
| ▶ <u>0x02</u> | thermal time constant | 60 s           | REAL32   |
| ▶ <u>0x03</u> | current nominal       | 82 A           | REAL32   |
| ▶ <u>0x04</u> | frequency nominal     | 50 Hz          | REAL32   |
| ▶ <u>0x05</u> | current P1            | 82 A           | REAL32   |
| ▶ <u>0x06</u> | current P2            | 82 A           | REAL32   |

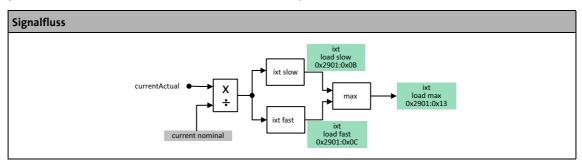
| Subindex 0x02: thermal time constant                     |           |      |        |
|----------------------------------------------------------|-----------|------|--------|
| Thermische Zeitkonstante des Motors                      |           |      |        |
| Skalierungsfaktor Einstellbereich Voreinstellung Datenty |           |      |        |
| 1                                                        | 0 900.0 s | 60 s | REAL32 |

| Subindex 0x03: current nominal                          |         |      |          |
|---------------------------------------------------------|---------|------|----------|
| Motor-Bemessungsstrom I <sub>N</sub>                    |         |      |          |
| Skalierungsfaktor Einstellbereich Voreinstellung Datent |         |      | Datentyp |
| 1                                                       | 0 300 A | 82 A | REAL32   |

| Subindex 0x04: frequency nominal        |                 |                |          |
|-----------------------------------------|-----------------|----------------|----------|
| Motor-Bemessungsfrequenz f <sub>N</sub> |                 |                |          |
| Skalierungsfaktor                       | Einstellbereich | Voreinstellung | Datentyp |
| 1                                       | 0 2000 Hz       | 50 Hz          | REAL32   |

| Subindex 0x05: current P1                               |                 |                |          |
|---------------------------------------------------------|-----------------|----------------|----------|
| Statorstrom I <sub>P1</sub> (bei Statorfrequenz = 0 Hz) |                 |                |          |
| Skalierungsfaktor                                       | Einstellbereich | Voreinstellung | Datentyp |
| 1                                                       | 0 300 A         | 82 A           | REAL32   |

| Subindex 0x06: current P2                                                           |                 |                |          |
|-------------------------------------------------------------------------------------|-----------------|----------------|----------|
| Statorstrom I <sub>P2</sub> (bei 2-facher Motor-Bemessungsfrequenz f <sub>N</sub> ) |                 |                |          |
| Skalierungsfaktor                                                                   | Einstellbereich | Voreinstellung | Datentyp |
| 1                                                                                   | 0 300 A         | 82 A           | REAL32   |


\_\_\_\_\_

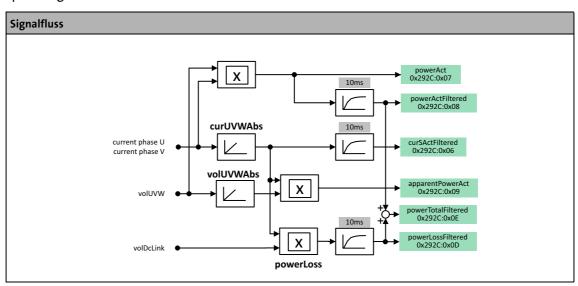
## 6.22 Überwachung Überlast Modul (I×t)

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt | Name                                 | MOBILE |     |         |       |
|--------|--------------------------------------|--------|-----|---------|-------|
|        |                                      | DCU    | PSU | DCU PSU | DCU S |
|        | Modulüberlastüberwachung (I×t) INV A | •      |     |         | •     |
|        | Modulüberlastüberwachung (I×t) INV B | •      |     | •       |       |

Die I×t-Überwachung schützt die 6 Halbbrücken des Leistungsteils. Die Überwachung kann nicht parametriert werden. Über die Wahl der Schaltfrequenz kann das Verhalten beeinflusst werden.




[6-24] Signalfluss Modulüberlastüberwachung (I×t)

# 6.23 Leistungsberechnung

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt | Name                      | MOBILE |     |         |       |
|--------|---------------------------|--------|-----|---------|-------|
|        |                           | DCU    | PSU | DCU PSU | DCU S |
|        | Leistungsberechnung INV A |        |     |         | •     |
|        | Leistungsberechnung INV B | •      |     | •       |       |

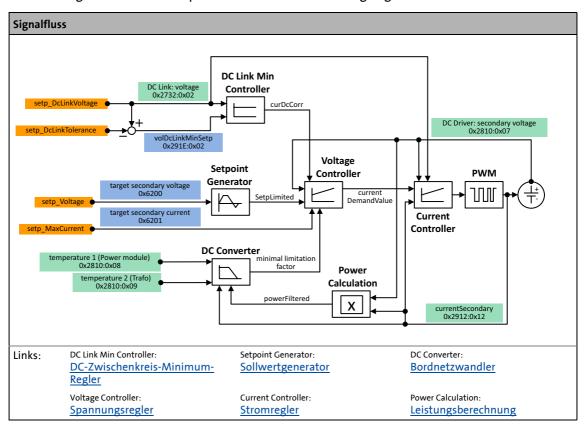
Der Funktionsblock Leistungsberechnung berechnet die Wirk- und Scheinleistung sowie die Statorspannung und den Statorstrom.



[6-25] Signalfluss Leistungsberechnung

\_\_\_\_\_

## 6.24 Bordnetzwandler konfigurieren


In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt        | Name                                 | MOBILE |     |         |       |
|---------------|--------------------------------------|--------|-----|---------|-------|
|               |                                      | DCU    | PSU | DCU PSU | DCU S |
| <u>0x2900</u> | DC Converter Supervision             |        | •   | •       |       |
| <u>0x2901</u> | DC Converter                         |        | •   | •       |       |
| <u>0x2912</u> | DC Controller Current Controller     |        | •   | •       |       |
| <u>0x2918</u> | DC Controller Setpoint Generator     |        | •   | •       |       |
| <u>0x291A</u> | DC Controller Voltage Controller     |        | •   | •       |       |
| 0x291E        | DC Controller DC Link Min Controller |        | •   | •       |       |

Der Bordnetzwandler wandelt die DC-Zwischenkreisspannung in die Bordnetzspannung um. Wenn die Last mehr Strom benötigt als der Bordnetzwandler liefern kann (setp\_MaxCurrent), wird die vorgegebene Bordnetzspannung (setp\_Voltage) nicht erreicht. Es wird dann auf den vorgegebenen Strom (setp\_MaxCurrent) geregelt. Der Regler ist ein kaskadierter Spannungs-Strom-Regler.

Mit dem "DC-Zwischenkreis-Minimum-Regler" kann der Bordnetzwandler den Strom reduzieren, falls die minimale DC-Zwischenkreisspannung erreicht wird.

Das Leistungsteil ist durch Temperatur- und i×t-Überwachungen geschützt.



[6-26] Übersicht Signalfluss Bordnetzwandler (vereinfachte Darstellung)

# 6.24 Bordnetzwandler konfigurieren

-----

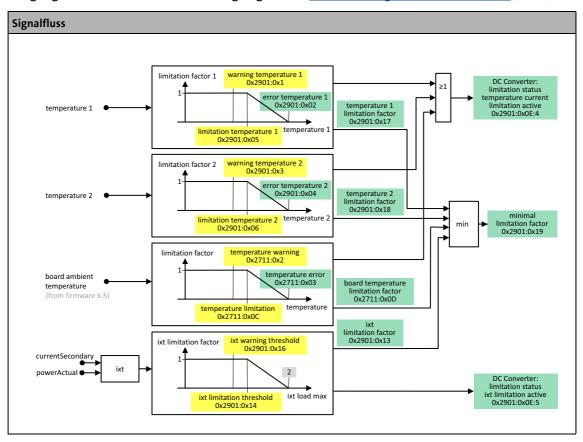
# Eingangsgrößen über Public CAN

| Name                 | Info                                                                                                                                                                                                        | Weitere Informationen                        |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| setp_DcLinkVoltage   | Sollwert für DC-Zwischenkreisspannung                                                                                                                                                                       | ▶ <u>Status der übergeordneten Steuerung</u> |
| setp_DcLinkTolerance | Dieser Wert wird vom Sollwert setp_DcLinkVoltage subtrahiert, um den für ein Derating benötigten Minimalwert der DC-Zwischenkreisspannung zu erhalten. Wenn nicht benutzt, muss der Wert 0 gesendet werden. | ➤ Sollwerte für Bordnetzwandler              |
| setp_Voltage         | Spannungssollwert für DC/DC-Wandler                                                                                                                                                                         |                                              |
| setp_MaxCurrent      | Maximaler Ausgangsstrom für DC/DC-<br>Wandler<br>Im Slave-Mode (mehrere DC/DC-Wandler<br>parallel) wird dieser Wert auf den Stromist-<br>wert des DC/DC-Masters gesetzt.                                    |                                              |

### 6.24.1 Reaktion bei Kommunikationsfehler

Über folgenden Parameter wird die Reaktion bei einem Kommunikationsfehler festgelegt.

# 0x2900 - DC Converter Supervision


| Subindex 0x09: communication fault reaction                                                                                                 |                 |                |            |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|------------|
| Reaktion bei Kommunikationsfehler:  0 = Keine Fehlerreaktion  1 = Warnung  2 = (Reserviert)  3 = (Reserviert)  4 = (Reserviert)  5 = Fehler |                 |                |            |
| Skalierungsfaktor                                                                                                                           | Einstellbereich | Voreinstellung | Datentyp   |
| 1                                                                                                                                           | 0 5             | 5              | UNSIGNED16 |

\_\_\_\_\_

#### 6.24.2 Bordnetzwandler

Der Bordnetzwandler wird über die gemessenen Temperaturen des Leistungsteils und des Trafos und durch die i×t-Überwachung geschützt. Ab der eingestellten Schwelle (limitation) bis zum Maximalwert wird der Ausgangsstrom auf 0 reduziert.

Liegt die Ausgangsleistung wegen hoher Ausgangsspannung über der Nennleistung, so wird der Ausgangsstrom über die i×t-Limitierung begrenzt. ▶ Überwachung Überlast Modul (I×t) (□ 168)



[6-27] Signalfluss Bordnetzwandler (vereinfachte Darstellung)

## 6.24 Bordnetzwandler konfigurieren

------

### Beschreibung der Parameter

#### 0x2901 - DC Converter

| Sub.          | Name                                             | Voreinstellung | Datentyp |
|---------------|--------------------------------------------------|----------------|----------|
| ▶ <u>0x01</u> | warning temperature 1 (für das Leistungsteil)    | 100 °C         | INT16    |
| ▶ <u>0x02</u> | error temperature 1 (für das Leistungsteil)      | 110 °C         | INT16    |
| ▶ <u>0x03</u> | warning temperature 2 (für den Trafokern)        | 110 °C         | INT16    |
| ▶ <u>0x04</u> | error temperature 2 (für den Trafokern)          | 120 °C         | INT16    |
| ▶ <u>0x05</u> | limitation temperature 1 (für das Leistungsteil) | 100 °C         | INT16    |
| ▶ <u>0x06</u> | limitation temperature 2 (für den Trafokern)     | 110 °C         | INT16    |
| ▶ <u>0x07</u> | voltageSecondaryMin                              | 2 V            | INT32    |
| ▶ <u>0x08</u> | errorTimeMax                                     | 1.999872 s     | INT16    |
| ▶ <u>0x14</u> | ixt limitation threshold                         | 1.949999       | INT32    |
| ▶ <u>0x16</u> | ixt warning threshold                            | 0              | INT32    |

#### Subindex 0x01: warning temperature 1

#### Warnschwelle für das Leistungsteil

- Wird die hier eingestellte Schwelle erreicht, wird im MC-Statuswort 1 das Warnungsbit 5 gesetzt.
- Die Warnschwelle hat eine Hysterese von 5 °C.

| Skalierungsfaktor   | Einstellbereich | Voreinstellung | Datentyp |
|---------------------|-----------------|----------------|----------|
| 6.250000000000E-002 | -20 150 °C      | 100 °C         | INT16    |

#### Subindex 0x02: error temperature 1

### Fehlerschwelle für das Leistungsteil

- Nur Anzeige
- Wird die hier eingestellte Schwelle erreicht, wird im <u>MC-Statuswort 1</u> das Fehlerbit 6 gesetzt.
- Die Warnschwelle hat eine Hysterese von 5 °C.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 |                 | 110 °C         | INT16    |

### Subindex 0x03: warning temperature 2

## Warnschwelle für den Trafokern

- Wird die hier eingestellte Schwelle erreicht, wird im MC-Statuswort 1 das Warnungsbit 8 gesetzt.
- Die Warnschwelle hat eine Hysterese von 5 °C.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 | -20 150 °C      | 110 °C         | INT16    |

## Subindex 0x04: error temperature 2

### Fehlerschwelle für den Trafokern

- Nur Anzeige
- Wird die hier eingestellte Schwelle erreicht, wird im MC-Statuswort 1 das Fehlerbit 9 gesetzt.
- Die Warnschwelle hat eine Hysterese von 5 °C.

| Skalierungsfaktor  | Einstellbereich | Voreinstellung | Datentyp |
|--------------------|-----------------|----------------|----------|
| 6.25000000000E-002 |                 | 120 °C         | INT16    |

# 6.24 Bordnetzwandler konfigurieren

| Subindex 0x05: limitation temperature 1                                                   |                    |                |          |
|-------------------------------------------------------------------------------------------|--------------------|----------------|----------|
| Temperaturbegrenzung für das Leistungsteil.  • Bei Wert 0 ist die Begrenzung deaktiviert. |                    |                |          |
| Skalierungsfaktor                                                                         | Einstellbereich    | Voreinstellung | Datentyp |
| 6.25000000000E-002                                                                        | -2048 2047.9375 °C | 100 °C         | INT16    |

| Subindex 0x06: limitation temperature 2                                               |                    |        |       |
|---------------------------------------------------------------------------------------|--------------------|--------|-------|
| Temperaturbegrenzung für den Trafokern.  • Bei Wert 0 ist die Begrenzung deaktiviert. |                    |        |       |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                             |                    |        |       |
| 6.25000000000E-002                                                                    | -2048 2047.9375 °C | 110 °C | INT16 |

#### Subindex 0x07: voltageSecondaryMin

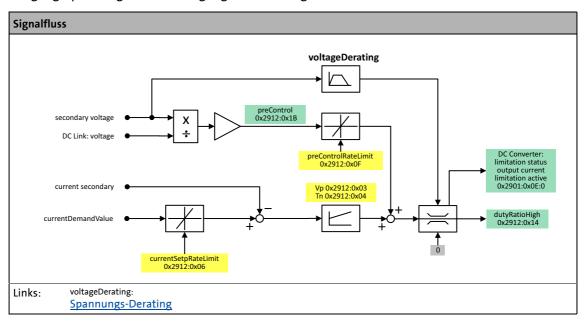
Spannungsschwelle für Überwachung auf zu niedrige Ausgangsspannung

- Wenn die Ausgangsspannung länger als die im Subindex 0x08 (errorTimeMax) eingestellte Zeitdauer unter der hier eingestellten Spannungsschwelle liegt, wird im MC-Statuswort 1 das Fehlerbit 10 gesetzt.
- Bei Einstellung "0" ist die Überwachung deaktiviert.

| Skalierungsfaktor   | Einstellbereich | Voreinstellung | Datentyp |
|---------------------|-----------------|----------------|----------|
| 2.441406250000E-004 | 0 40 V          | 2 V            | INT32    |

| Subindex 0x08: errorTimeMax                                                               |                 |                |          |
|-------------------------------------------------------------------------------------------|-----------------|----------------|----------|
| Zeitdauer für Überwachung auf zu niedrige Ausgangsspannung • Siehe Subindex <u>0x07</u> . |                 |                |          |
| Skalierungsfaktor                                                                         | Einstellbereich | Voreinstellung | Datentyp |
| 1.02400000000E-003                                                                        | 0 33.553408 s   | 1.999872 s     | INT16    |

| Subindex 0x14: ixt limitation threshold                                                                                       |            |          |       |
|-------------------------------------------------------------------------------------------------------------------------------|------------|----------|-------|
| Ab der Schwelle bis zum Maximalwert wird der Begrenzungsfaktor auf 0 reduziert.  • Bei Wert 0 ist die Begrenzung deaktiviert. |            |          |       |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                                                     |            |          |       |
| 2.980232238770E-008                                                                                                           | 0 1.964999 | 1.949999 | INT32 |


| Subindex 0x16: ixt warning threshold                                                               |                 |                |          |
|----------------------------------------------------------------------------------------------------|-----------------|----------------|----------|
| Warnschwelle für die ixt-Auslastung des Leistungsteils.  • Bei Wert 0 ist die Warnung deaktiviert. |                 |                |          |
| Skalierungsfaktor                                                                                  | Einstellbereich | Voreinstellung | Datentyp |
| 1.862645149231E-009                                                                                | 0 2.000000      | 0              | INT32    |

# 6.24 Bordnetzwandler konfigurieren

\_\_\_\_\_

## 6.24.3 Stromregler

Der Stromregler regelt den aktuellen Strom auf den Sollwert. Das Verhältnis Ausgangsspannung zu DC-Zwischenkreisspannung wird zur Vorsteuerung verwendet. Bei sehr kleiner oder sehr großer Ausgangsspannung wird der Ausgang des Stromreglers limitiert.



[6-28] Signalfluss Stromregler (vereinfachte Darstellung)

### Beschreibung der Parameter

### 0x2912 - DC Controller Current Controller

| Sub.          | Name                 | Voreinstellung | Datentyp |
|---------------|----------------------|----------------|----------|
| ▶ <u>0x03</u> | Vp                   | 0.0005 1/A     | REAL32   |
| ▶ <u>0x04</u> | Tn                   | 0.0002 s       | REAL32   |
| ▶ <u>0x06</u> | currentSetpRateLimit | 100000 A/s     | REAL32   |
| ▶ <u>0x0D</u> | currentPrimaryOffset | 0 A            | REAL32   |
| ▶ <u>0x0F</u> | preControlRateLimit  | 200 1/s        | REAL32   |

| Subindex 0x03: Vp             |                 |                |          |  |
|-------------------------------|-----------------|----------------|----------|--|
| Stromregler: Verstärkung Vp   |                 |                |          |  |
| Skalierungsfaktor             | Einstellbereich | Voreinstellung | Datentyp |  |
| 1 0 0.2 1/A 0.0005 1/A REAL32 |                 |                |          |  |

| Subindex 0x04: Tn             |                 |                |          |
|-------------------------------|-----------------|----------------|----------|
| Stromregler: Nachstellzeit Tn |                 |                |          |
| Skalierungsfaktor             | Einstellbereich | Voreinstellung | Datentyp |
| 1                             | 0 0.01 s        | 0.0002 s       | REAL32   |

| Subindex 0x06: currentSetpRateLimit                               |                                                           |            |        |  |
|-------------------------------------------------------------------|-----------------------------------------------------------|------------|--------|--|
| Stromregler: Maximale Anstiegsgeschwindigkeit des Stromsollwertes |                                                           |            |        |  |
| Skalierungsfaktor                                                 | Skalierungsfaktor Einstellbereich Voreinstellung Datentyp |            |        |  |
| 1                                                                 | 0 1000000 A/s                                             | 100000 A/s | REAL32 |  |

# 6.24 Bordnetzwandler konfigurieren

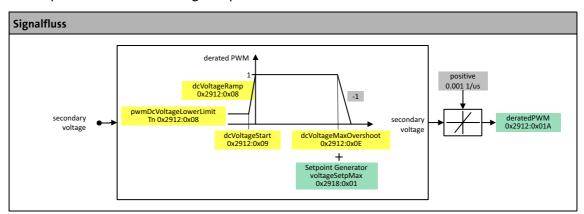
-----

### Subindex 0x0D: currentPrimaryOffset

Strom-Offset zur Korrektur des Sekundärstroms

• Der gemessene Primärstrom wird mit diesem Offset-Wert multipliziert, um den Sekundärstrom für den Regler zu berechnen.

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp |
|-------------------|-----------------|----------------|----------|
| 1                 | -2 2 A          | 0 A            | REAL32   |


| Subindex 0x0F: preControlRateLimit                               |                                                           |         |        |  |
|------------------------------------------------------------------|-----------------------------------------------------------|---------|--------|--|
| Anstiegsbegrenzung der Spannungsvorsteuerung für den Stromregler |                                                           |         |        |  |
| Skalierungsfaktor                                                | Skalierungsfaktor Einstellbereich Voreinstellung Datentyp |         |        |  |
| 1                                                                | 1 1000 1/s                                                | 200 1/s | REAL32 |  |

# 6.24 Bordnetzwandler konfigurieren

\_\_\_\_\_

## 6.24.4 Spannungs-Derating

Bei sehr kleiner und sehr großer Ausgangsspannung wird der Ausgang des Stromreglers limitiert. Die Eckpunkte dieser Limitierung sind parametrierbar.



[6-29] Signalfluss Spannungs-Derating (vereinfachte Darstellung)

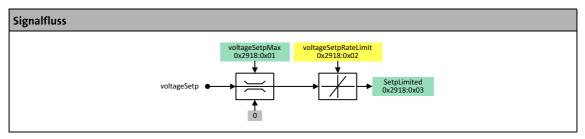
# Beschreibung der Parameter

#### 0x2912 - DC Controller Current Controller

| Sub.          | Name                   | Voreinstellung | Datentyp |
|---------------|------------------------|----------------|----------|
| ▶ <u>0x08</u> | dcVoltageRamp          | 1 1/V          | REAL32   |
| ▶ <u>0x09</u> | dcVoltageStart         | -1 V           | REAL32   |
| ▶ <u>0x0A</u> | pwmDcVoltageLowerLimit | 0.03           | REAL32   |
| ▶ <u>0x0E</u> | dcVoltageMaxOvershoot  | 1.0 V          | REAL32   |

| Subindex 0x08: dcVoltageRamp                                                                                                 |          |       |        |  |
|------------------------------------------------------------------------------------------------------------------------------|----------|-------|--------|--|
| PWM-Derating bei niedriger DC-Ausgangsspannung  • Derating = dcVoltageRamp x (aktuelle DC-Ausgangsspannung - dcVoltageStart) |          |       |        |  |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                                                    |          |       |        |  |
| 1                                                                                                                            | 0 10 1/V | 1 1/V | REAL32 |  |

| Subindex 0x09: dcVoltageStart                                                                                               |          |      |        |
|-----------------------------------------------------------------------------------------------------------------------------|----------|------|--------|
| PWM-Derating bei niedriger DC-Ausgangsspannung • Derating = dcVoltageRamp x (aktuelle DC-Ausgangsspannung - dcVoltageStart) |          |      |        |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                                                   |          |      |        |
| 1                                                                                                                           | -10 10 V | -1 V | REAL32 |


| Subindex 0x0A: pwmDcVoltageLowerLimit                            |                                                           |      |        |  |
|------------------------------------------------------------------|-----------------------------------------------------------|------|--------|--|
| Untere Grenze des PWM-Derating bei niedriger DC-Ausgangsspannung |                                                           |      |        |  |
| Skalierungsfaktor                                                | Skalierungsfaktor Einstellbereich Voreinstellung Datentyp |      |        |  |
| 1                                                                | 0 0.2                                                     | 0.03 | REAL32 |  |

# 6.24 Bordnetzwandler konfigurieren

| Subindex 0x0E: dcVoltageMaxOvershoot              |                 |                |          |  |
|---------------------------------------------------|-----------------|----------------|----------|--|
| Maximal erlaubter Überschwingwert der DC-Spannung |                 |                |          |  |
| Skalierungsfaktor                                 | Einstellbereich | Voreinstellung | Datentyp |  |
| 1                                                 | -24.0 3.0 V     | 1.0 V          | REAL32   |  |

# 6.24.5 Sollwertgenerator

Der Sollwert wird auf den Maximalwert limitiert und mit einer einstellbaren Rampe verändert.

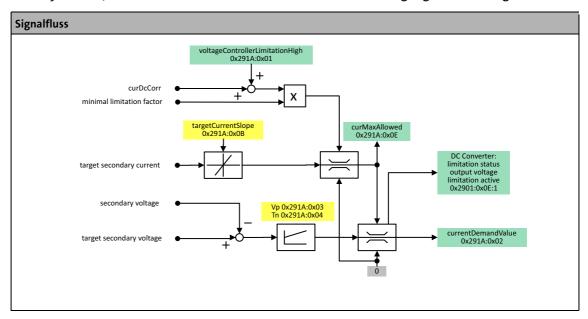


[6-30] Signalfluss Sollwertgenerator (vereinfachte Darstellung)

### Beschreibung der Parameter

#### 0x2918 - DC Controller Setpoint Generator

| Subindex 0x01: voltageSetpMax                    |                 |                                |          |
|--------------------------------------------------|-----------------|--------------------------------|----------|
| Begrenzung des Spannungssollwertes • Nur Anzeige |                 |                                |          |
| Skalierungsfaktor                                | Einstellbereich | Voreinstellung                 | Datentyp |
| 1                                                |                 | P, T: [16]; U, V, S, C: [32] V | REAL32   |


| Subindex 0x02: voltageSetpRateLimit                      |                 |                |          |
|----------------------------------------------------------|-----------------|----------------|----------|
| Maximale Anstiegsgeschwindigkeit des Spannungssollwertes |                 |                |          |
| Skalierungsfaktor                                        | Einstellbereich | Voreinstellung | Datentyp |
| 1                                                        | 0 100000 V/s    | 2500 V/s       | REAL32   |

## 6.24 Bordnetzwandler konfigurieren

-----

## 6.24.6 Spannungsregler

Der Spannungsregler regelt die aktuelle Spannung auf den geforderten Wert. Der Ausgang des Spannungsreglers ist der Stromsollwert (currentDemandValue). Der geforderte Strom (target secondary current) und der limitierte Maximalwert limitieren den Ausgang des Stromreglers.



[6-31] Signalfluss Spannungsregler (vereinfachte Darstellung)

### Beschreibung der Parameter

### 0x291A - DC Controller Voltage Controller

| Sub.          | Name                            | Voreinstellung                                                     | Datentyp |
|---------------|---------------------------------|--------------------------------------------------------------------|----------|
| ▶ <u>0x01</u> | voltageControllerLimitationHigh | 562, U, V, S, C: 282, P, T:<br>[200] A<br>282, U, V, S, C: [100] A | REAL32   |
| ▶ <u>0x03</u> | Vp                              | 3 A/V                                                              | REAL32   |
| ▶ <u>0x04</u> | Tn                              | 0.003 s                                                            | REAL32   |
| ▶ <u>0x0B</u> | targetCurrentSlope              | 100 A/s                                                            | REAL32   |
| ▶ <u>0x0F</u> | voltageControllerAdaption       | 0.01                                                               | REAL32   |

| Subindex 0x01: voltageControllerLimitationHigh      |                 |                                                                    |          |
|-----------------------------------------------------|-----------------|--------------------------------------------------------------------|----------|
| Obere Begrenzung des Spannungsreglers • Nur Anzeige |                 |                                                                    |          |
| Skalierungsfaktor                                   | Einstellbereich | Voreinstellung                                                     | Datentyp |
| 1                                                   |                 | 562, U, V, S, C: 282, P, T:<br>[200] A<br>282, U, V, S, C: [100] A | REAL32   |

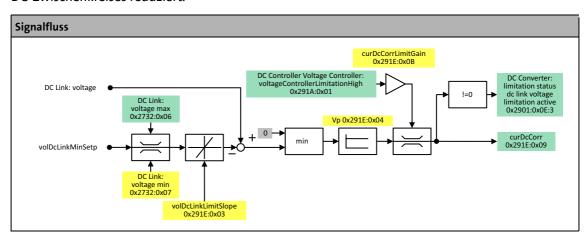
| Subindex 0x03: Vp                                                           |                 |                |          |
|-----------------------------------------------------------------------------|-----------------|----------------|----------|
| Spannungsregler: Verstärkung Vp  • Der Regler ist als PI-Regler realisiert. |                 |                |          |
| Skalierungsfaktor                                                           | Einstellbereich | Voreinstellung | Datentyp |
| 1                                                                           | 0 20 A/V        | 3 A/V          | REAL32   |

# 6.24 Bordnetzwandler konfigurieren

-----

| Subindex 0x04: Tn                                                             |                 |                |          |
|-------------------------------------------------------------------------------|-----------------|----------------|----------|
| Spannungsregler: Nachstellzeit Tn  • Der Regler ist als PI-Regler realisiert. |                 |                |          |
| Skalierungsfaktor                                                             | Einstellbereich | Voreinstellung | Datentyp |
| 1                                                                             | 0 1 s           | 0.003 s        | REAL32   |

| Subindex 0x0B: targetCurrentSlope                       |                 |                |          |
|---------------------------------------------------------|-----------------|----------------|----------|
| Spannungsregler: Anstiegsgeschwindigkeit des Sollstroms |                 |                |          |
| Skalierungsfaktor                                       | Einstellbereich | Voreinstellung | Datentyp |
| 1                                                       | 0 1000000 A/s   | 100 A/s        | REAL32   |


| Subindex 0x0F: voltageControllerAdaption                                                        |       |      |        |
|-------------------------------------------------------------------------------------------------|-------|------|--------|
| Spannungsregler: Adaption ki • ki = Vp/Tn x aktueller Sekundärstrom x voltageControllerAdaption |       |      |        |
| Skalierungsfaktor Einstellbereich Voreinstellung Datentyp                                       |       |      |        |
| 1                                                                                               | 0 0.1 | 0.01 | REAL32 |

### 6.24 Bordnetzwandler konfigurieren

-----

### 6.24.7 DC-Zwischenkreis-Minimum-Regler

Der DC-Zwischenkreisregler versucht die DC-Zwischenkreisspannung im geforderten Bereich zu halten. Wenn die DC-Zwischenkreisspannung unter den minimalen geforderten Wert fällt, wird über die Stromkorrektur (curDcCorr) der maximale Strom reduziert. Dadurch wird die Belastung des DC-Zwischenkreises reduziert.



[6-32] Signalfluss DC-Zwischenkreis-Minimum-Regler (vereinfachte Darstellung)

#### Beschreibung der Parameter

#### 0x291E - DC Controller DC Link Min Controller

| Sub.          | Name                | Voreinstellung | Datentyp |
|---------------|---------------------|----------------|----------|
| ▶ <u>0x03</u> | volDcLinkLimitSlope | 10 V/s         | REAL32   |
| ▶ <u>0x04</u> | dcLinkController Vp | 2 A/V          | REAL32   |
| ▶ <u>0x0B</u> | curDcCorrLimitGain  | 1              | REAL32   |

# Subindex 0x03: volDcLinkLimitSlope

Rampe für die maximale Änderung der Zwischenkreisspannungsgrenzen

• Bei Einstellung "0" ist keine Rampenbegrenzung aktiv und die Zwischenkreisspannungsgrenzen folgen direkt dem Sollwert.

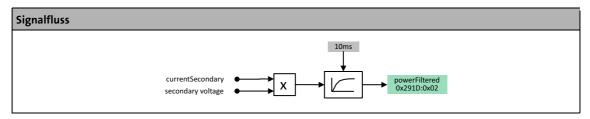
| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp |
|-------------------|-----------------|----------------|----------|
| 1                 | 0 100000 V/s    | 10 V/s         | REAL32   |

## Subindex 0x04: dcLinkController Vp

DC-Zwischenkreisregler: Verstärkung Vp

- Der Regler ist als P-Regler mit Totband realisiert.
- Der Regler berechnet abhängig von den Sollwerten für die maximale und minimale Zwischenkreisspannung einen Korrekturstrome. Die Regelung reagiert anhand dieses Korrekturstromes so, dass die Zwischenkreisspannung sich in Richtung des erlaubten Bereiches bewegt.

| Skalierungsfaktor | Einstellbereich | Voreinstellung | Datentyp |
|-------------------|-----------------|----------------|----------|
| 1                 | 0 1000 A/V      | 2 A/V          | REAL32   |


| Subindex 0x0B: curDcCorrLimitGain                                              |                 |                |          |
|--------------------------------------------------------------------------------|-----------------|----------------|----------|
| DC-Zwischenkreis-Minimum-Regler: Verstärkung für die Korrektur der Stromgrenze |                 |                |          |
| Skalierungsfaktor                                                              | Einstellbereich | Voreinstellung | Datentyp |
| 1                                                                              | 0.1 1           | 1              | REAL32   |

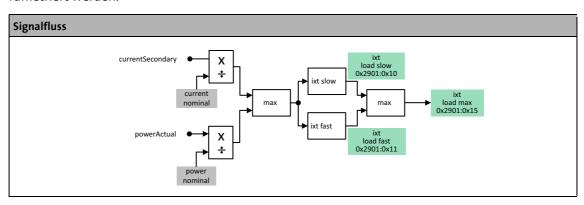
## 6.24 Bordnetzwandler konfigurieren

-----

## 6.24.8 Leistungsberechnung

Mit der Ausgangsspannung und dem Ausgangsstrom wird die Ausgangsleistung berechnet und gefiltert.




[6-33] Signalfluss Leistungsberechnung (vereinfachte Darstellung)

## 6.24.9 Überwachung Überlast Modul (I×t)

In diesem Kapitel beschriebene Objekte und deren Verfügbarkeit für die MOBILE-Geräte:

| Objekt | Name                               | MOBILE |     |         |       |
|--------|------------------------------------|--------|-----|---------|-------|
|        |                                    | DCU    | PSU | DCU PSU | DCU S |
|        | Modulüberlastüberwachung (I×t) PSU |        | •   | •       |       |

Die I×t-Überwachung schützt die Halbbrücken des Leistungsteils. Die Überwachung kann nicht parametriert werden.



[6-34] Signalfluss Modulüberlastüberwachung (Ixt) (vereinfachte Darstellung)

## 7.1 Datenformat der physikalischen Werte

.\_\_\_\_\_

# 7 Public CAN

Über die Kundenschnittstelle "Public CAN" ist eine Kommunikation mit der Fahrzeug- oder Subsystem-Steuerung (z. B. Klimaanlage) nach SAE J1939 möglich.

# 7.1 Datenformat der physikalischen Werte

## Datentypen

| Datentyp       | Abkürzung | Länge  |
|----------------|-----------|--------|
| Unsigned Char  | UC        | 8 Bit  |
| Unsigned Short | US        | 16 Bit |
| Unsigned Long  | UL        | 32 Bit |

### **Skalierung**

| Parameter<br>(Signal)         | Skalierung<br>(Name) | Auflösung<br>(1 bit) | Physikalischer<br>Wertebereich | Offset     | Datentyp | J1939 slot<br>(J1939-71) |
|-------------------------------|----------------------|----------------------|--------------------------------|------------|----------|--------------------------|
| Strom                         | scCur1               | 0.05 A               | -1600 1612.75 A                | -1600 A    | US       | SAEec01                  |
| Spannung                      | scVolt1              | 0.2 V                | 0 50 V                         | 0          | UC       | -                        |
| Spannung<br>(ab Version 05.4) | scVolt1              | 0.001 V              | 0 64.255 V                     | 0          | US       | SAEev06                  |
| Spannung                      | scVolt2              | 4 V                  | 0 1000 V                       | 0          | UC       | -                        |
| Leistung                      | scPower1             | 0.005 kW             | -160 161.275 kW                | -160 kW    | US       | -                        |
| Drehmoment                    | scTorque1            | 0.2 Nm               | -6400 6451 Nm                  | -6400 Nm   | US       | -                        |
| Geschwindigkeit               | scVeloc1             | 1 rpm                | -32000 32255 rpm               | -32000 rpm | US       | -                        |
| Temperatur                    | scTemp1              | 1°C                  | -40 210 °C                     | -40°C      | UC       | SAEtp01                  |
| Prozent                       | scPercent            | 1%                   | 0 250 %                        | 0          | UC       | -                        |

### Umrechnungsformeln

- CAN-Datenwort = (Physikalischer Wert Offset) / Skalierung
- Physikalischer Wert = (CAN-Datenwort \* Skalierung) + Offset

## 7.1 Datenformat der physikalischen Werte

.\_\_\_\_\_

#### Wertebereiche

Jeder Wertebereich für einen bestimmten Datentypen ist in mehrere Teilbereiche mit unterschiedlicher Bedeutung aufgeteilt (in Übereinstimmung mit SAE J1939-71). Somit können auch Zusatzinformationen im Datenwort platziert werden. Da jedoch nicht der gesamte Wertebereich eines Datentypen für die Übertragung des physikalischen Wertes genutzt werden kann, sind entsprechende Skalierungen erforderlich.

| 1-Byte-Werte                      |                            |                        |  |  |  |
|-----------------------------------|----------------------------|------------------------|--|--|--|
| Bedeutung                         | Wertebereich (hexadezimal) | Wertebereich (dezimal) |  |  |  |
| Gültig                            | 00 FA                      | 0 250                  |  |  |  |
| Initialisierung                   | FB                         | 251                    |  |  |  |
| Reserviert                        | FC FD                      | 252 253                |  |  |  |
| Fehleranzeige                     | FE                         | 254                    |  |  |  |
| Code für "Signal nicht vorhanden" | FF                         | 255                    |  |  |  |

| 2-Byte-Werte                      |                            |                        |
|-----------------------------------|----------------------------|------------------------|
| Bedeutung                         | Wertebereich (hexadezimal) | Wertebereich (dezimal) |
| Gültig                            | 0000 FAFF                  | 0 64255                |
| Initialisierung                   | FB00 FBFF                  | 64256 64511            |
| Reserviert                        | FC00 FDFF                  | 64512 65023            |
| Fehleranzeige                     | FE00 FEFF                  | 65024 65279            |
| Code für "Signal nicht vorhanden" | FF00 FFFF                  | 65280 65535            |

| 4-Byte-Werte                      |                            |                        |
|-----------------------------------|----------------------------|------------------------|
| Bedeutung                         | Wertebereich (hexadezimal) | Wertebereich (dezimal) |
| Gültig                            | 00000000 FAFFFFF           | 0 4211081215           |
| Initialisierung                   | FB000000 FBFFFFFF          | 4211081216 4227858431  |
| Reserviert                        | FC000000 FDFFFFFF          | 4227858432 4261412863  |
| Fehleranzeige                     | FE000000 FEFFFFFF          | 4261412864 4278190079  |
| Code für "Signal nicht vorhanden" | FF000000 FFFFFFF           | 4278190080 4294967294  |

| Binäre 2-Bit-Statussignale           |              |                |  |  |  |  |
|--------------------------------------|--------------|----------------|--|--|--|--|
| Bedeutung                            | Wert (binär) | Wert (dezimal) |  |  |  |  |
| Inaktiv (aus, passiv, beendet, etc.) | 00           | 0              |  |  |  |  |
| Aktiv (ein, aktiv, etc.)             | 01           | 1              |  |  |  |  |
| Fehleranzeige                        | 10           | 2              |  |  |  |  |
| Code für "Signal nicht vorhanden"    | 11           | 3              |  |  |  |  |

| Binäre 2-Bit-Steuersignale                 |              |                |  |  |  |
|--------------------------------------------|--------------|----------------|--|--|--|
| Bedeutung                                  | Wert (binär) | Wert (dezimal) |  |  |  |
| Deaktivieren (ausschalten, sperren, etc.)  | 00           | 0              |  |  |  |
| Aktivieren (einschalten, freigeben, etc.)  | 01           | 1              |  |  |  |
| Reserviert                                 | 10           | 2              |  |  |  |
| Keine Angabe (Signal hat keine Auswirkung) | 11           | 3              |  |  |  |

### 7.2 Parametergruppen (PGs)

-----

### 7.2 Parametergruppen (PGs)

In Übereinstimmung mit dem Netzwerkprotokoll J1939 sind die Parameter (Signale) in Parametergruppen (PGs) zusammengefasst.

- Die Parametergruppen des MOBILE haben eine feste Datenlänge von 8 Bytes.
- Nicht benötigte Datenbytes haben den Wert 0xFF ("Signal nicht vorhanden").
- Die Parameter (Signale) werden im sogenannten "Little-Endian-Format" (auch "Intel-Format") übertragen, d. h. das Byte mit den niederwertigsten Bits kommt zuerst.

#### 7.2.1 Identifier

Für den Identifier einer Parametergruppe werden 29 Bits verwendet. Der Identifier enthält u. a. die Information, ob die Nachricht an alle Busteilnehmer ("Broadcast") oder nur an einen bestimmten Busteilnehmer ("Peer-to-Peer") gerichtet ist.

| Bit 28 (msb) Bit 26 | Bit 25                                                                                                                                                | Bit 24             | Bit 23 Bit 16 | Bit 15 Bit 8 | Bit 7 Bit 0 (lsb)     |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|--------------|-----------------------|--|
| Priority            | Extended Data Page                                                                                                                                    | Data Page          | PDU Format    | PDU Specific | Source Address (SA)   |  |
| 0 7                 | 0 für J1939                                                                                                                                           | 0 oder 1 für J1939 | siehe unten   | siehe unten  | 0 253 (Senderadresse) |  |
|                     |                                                                                                                                                       |                    |               |              |                       |  |
| Priority:           | 0 = höchste Priorität; 7 = niedrigste Priorität                                                                                                       |                    |               |              |                       |  |
| PDU Format:         | 0 239 = "Peer-to-Peer"-Meldung (239 für hersteller-spezifische Meldungen)<br>240 255 = "Broadcast"-Meldung (255 für hersteller-spezifische Meldungen) |                    |               |              |                       |  |
| PDU Specific:       | Bei "Peer-to-Peer"-Meldung: Empfängeradresse<br>Bei "Broadcast"-Meldung: Gruppenerweiterung (z.B. 0x01 für Inverter-1-Signale)                        |                    |               |              |                       |  |

### 7.2.2 Parameter Group Number (PGN)

Jede Parametergruppe kann durch eine eindeutige Nummer, die sogenannte "Parameter Group Number" (PGN), identifiziert werden. Die PGN hat eine Datenlänge von 24 Bits. Der Aufbau der PGN ist abhängig davon, ob es sich um eine "Peer-to-Peer"- oder eine "Broadcast"-Meldung handelt.

#### Aufbau einer "Peer-to-Peer"-PGN

- Die PGN entspricht dem Identifier ohne "Priority" und ohne "Source Address".
- "PDU Specific" ist auf den Wert "0" gesetzt.
- Die vorderen 6 Bits (Bit 18 ... Bit 23) sind mit Nullen gefüllt.

| Bit 23 (msb) Bit 18                                                 | Bit 17             | Bit 16    | Bit 15 Bit 8 | Bit 7 Bit 0  |  |  |
|---------------------------------------------------------------------|--------------------|-----------|--------------|--------------|--|--|
|                                                                     | Extended Data Page | Data Page | PDU Format   | PDU Specific |  |  |
| 0                                                                   | 0                  | 0         | 0 239        | 0            |  |  |
| Beispiel: 0x00ED00 PDU Format = 0xED = 237 = "Peer-to-Peer"-Meldung |                    |           |              |              |  |  |

### 7.2 Parametergruppen (PGs)

------

#### Aufbau einer "Broadcast"-PGN

- Die PGN entspricht dem <u>Identifier</u> ohne "Priority" und ohne "Source Address".
- Die vorderen 6 Bits (Bit 18 ... Bit 23) sind mit Nullen gefüllt.

| Bit 23 (msb) Bit 18                                                                                                                           | Bit 17             | Bit 16    | Bit 15 Bit 8 | Bit 7 Bit 0        |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|--------------|--------------------|--|--|
| -                                                                                                                                             | Extended Data Page | Data Page | PDU Format   | PDU Specific       |  |  |
| 0                                                                                                                                             | 0 0                |           |              | Gruppenerweiterung |  |  |
| Beispiel: 0x00FE01  PDU Specific = 0x01 = 1 = Gruppenerweiterung (hier für Inverter-1-Signale)  PDU Format = 0xFE = 140 = "Broadcast"-Meldung |                    |           |              |                    |  |  |



# Hinweis!

Für den MOBILE sind nur "Broadcast"-Meldungen zu verwenden!

Grund hierfür ist, dass nur zwei "Peer-to-Peer"-PGNs für herstellerspezifische Meldungen existieren ("PDU Format" = 239 mit "Data Page" = 0 oder 1). Die anderen Einstellmöglichkeiten für "PDU Format" sind J1939-PGs zugeordnet und daher für den MOBILE nicht verfügbar.

Um bei mehreren MOBILE im selben Netzwerk gezielt ein bestimmtes Gerät anzusprechen, muss die "Broadcast"-PGN die Gerätenummer (1 ... 14) des entsprechenden MOBILE enthalten. Hierzu werden in der Voreinstellung die Bits 4 ... 7 der Gruppenerweiterung verwendet.

### Beispiele:

- Gruppenerweiterung = 0x11 → Meldung 1 für MOBILE 1
- Gruppenerweiterung = 0x21 → Meldung 1 für MOBILE 2
- Gruppenerweiterung = 0x31 → Meldung 1 für MOBILE 3
- usw.

#### 7.3 Public CAN receive messages

-----

### 7.3 Public CAN receive messages

#### Übersicht

In der folgenden Tabelle sind alle Empfangsbotschaften aufgeführt.

- Die Identifier basieren auf der Voreinstellung des MOBILE:
  - CAN-Adresse des MOBILE = 234 (0xEA)
  - Gerätenummer = 1 (MOBILE 1)
- CAN-Adresse der übergeordneten Steuerung = 128 (0x80)
- Die Zykluszeit ist für alle Meldungen auf 100 ms voreingestellt.

| CAN                              | N-ID       | MOBILE |     | Name        | Ausführliche Beschreibung |                                  |                                                        |
|----------------------------------|------------|--------|-----|-------------|---------------------------|----------------------------------|--------------------------------------------------------|
| [decimal]                        | [hex]      | DCU    | PSU | DCU/<br>DCU | DCU/<br>PSU               |                                  |                                                        |
| Prio: 6<br>PGN: 65296<br>SA: 128 | 0x18FF1080 | R      | R   | R           | R                         | Receive message 0<br>(Broadcast) | ► <u>Status der übergeordneten</u><br><u>Steuerung</u> |
| Prio: 6<br>PGN: 65297<br>SA: 128 | 0x18FF1180 | R      | -   | R           | -                         | Receive message 1                | ► <u>Sollwerte für Motor A</u>                         |
| Prio: 6<br>PGN: 65298<br>SA: 128 | 0x18FF1280 | -      | -   | R           | R                         | Receive message 2                | ► <u>Sollwerte für Motor B</u>                         |
| Prio: 6<br>PGN: 65299<br>SA: 128 | 0x18FF1380 | -      | R   | -           | R                         | Receive message 3                | ► <u>Sollwerte für</u><br><u>Bordnetzwandler</u>       |

#### **Default-Werte nach Timeout**

Der MOBILE überwacht den regelmäßigen Empfang der zyklischen Empfangsbotschaften.

- Für jede Empfangsbotschaft wird eine eigene Überwachung durchgeführt.
- Die Überwachung wird aktiv, sobald die entsprechende Empfangsbotschaft das erste Mal von der übergeordneten Steuerung empfangen wurde.
- Bleibt eine Empfangsbotschaft länger als die eingestellte Timeout-Zeit aus, werden die entsprechenden Parameter (Signale) für den MOBILE auf Default-Werte gesetzt. Die jeweiligen Default-Werte können Sie der ausführlichen Beschreibung der Empfangsbotschaften entnehmen.
- Die Timeout-Zeit ist für alle Meldungen auf 500 ms voreingestellt.

# 7.3 Public CAN receive messages

\_\_\_\_\_\_

# 7.3.1 Status der übergeordneten Steuerung

| CAN-ID     |                              | Zykluszeit | Timeout-Zeit | Sender | Empfänger    |
|------------|------------------------------|------------|--------------|--------|--------------|
| 0x18FF10yy | Prio: 6, PGN: 0xFF10, SA: yy | 100 ms     | 500 ms       | уу     | Alle MOBILEs |

| Byte  | Bit | Name                                                  | Wertebereich<br>(Skalierung) | Timeout-Wert                                                                                           | Info                                                                                                                                                                                    |
|-------|-----|-------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0 1 | SystemEnable                                          | 0 3                          | letzter Wert                                                                                           | Systemfreigabe (globale Freigabe aller angeschlossenen MOBILE): 0: Keine Freigabe 1: Freigabe 2: Reserviert 3: Keine Angabe                                                             |
|       | 2 3 | Clamp15_CAN                                           | 0 3                          | 3                                                                                                      | Status der Klemme 15: 0: Kein Klemme-15-Signal 1: Klemme-15-Signal 2: Reserviert 3: Keine Angabe                                                                                        |
|       | 4 5 | DischargeEnable<br>(Ab Firmware R6.4)                 | 0 3                          | letzter Wert                                                                                           | Befehl zur Aktivierung des Entladevorgangs eines oder mehrerer MOBILE-Geräte (abhängig von der Konfiguration).  0: Keine Freigabe  1: Freigabe  10: n.d.  11: N/A (behavior: No enable) |
|       | 6 7 | -                                                     | -                            | -                                                                                                      | Reserviert                                                                                                                                                                              |
| 1     |     | setp_DcLinkVoltage                                    | 0 1000 [V]<br>(scVolt2)      | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4040:0x05,<br>0x4050:0x05,<br>0x4060:0x05) | Sollwert für DC-Zwischenkreis-<br>spannung.<br>Wenn nicht benutzt, ist der Wert<br>0 zu senden.                                                                                         |
| 2     |     | -                                                     | -                            | -                                                                                                      | Reserviert                                                                                                                                                                              |
| 3     |     | setp_<br>VoltagePrechargeDemand<br>(Ab Firmware R6.3) | 0 1000 [V]<br>(scVolt2)      | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4040:0x05,<br>0x4050:0x05,<br>0x4060:0x05) | Sollwert für das Vorladen des DC-Zwischenkreises. Wird 0x00 oder >0xFA gesendet, wird als Vorladesollwert der Parameter 0x4010:0x05 verwendet.  Precharge-Funktion (1289)               |
| 4 - 7 |     | -                                                     | -                            | -                                                                                                      | Reserviert                                                                                                                                                                              |

# 7.3 Public CAN receive messages

------

# 7.3.2 Sollwerte für Motor A

| CAN-ID                                    |  | Zykluszeit | Timeout-Zeit | Sender | Empfänger    |
|-------------------------------------------|--|------------|--------------|--------|--------------|
| 0x18FFz1yy Prio: 6, PGN: 0xFFz1, SA: yy   |  | 100 ms     | 500 ms       | уу     | MOBILE Nr. z |
| z = address offset -  Geräte-Identifikati |  |            |              |        |              |

| Byte  | Bit | Name                 | Wertebereich<br>(Skalierung)        | Timeout-Wert                                                           | Info                                                                                                                                                                                                                                 |
|-------|-----|----------------------|-------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0 1 | ctrIDCU              | 0 3                                 | letzter Wert                                                           | Drive Control Unit (DCU): 0: DCU ausschalten 1: DCU einschalten 2: Reserviert 3: Keine Angabe                                                                                                                                        |
|       | 2 7 | -                    | -                                   | -                                                                      | Reserviert                                                                                                                                                                                                                           |
| 1     |     | setp_DcLinkTolerance | 0 1000 [V]<br>(scVolt2)             | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4040:0x05) | Dieser Wert wird zum Sollwert setp DcLinkVoltage addiert bzw. davon subtrahiert, um den für ein Derating benötigten Maximal- und Minimalwert der DC-Zwischenkreisspannung zu erhalten. Wenn nicht benutzt, ist der Wert 0 zu senden. |
| 2     |     | setp_MotPower        | 0 250 [%]<br>(scPercent)            | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4040:0x05) | Motorische Leistungsgrenze für<br>Ausgang INV A.<br>Wenn nicht benutzt, ist der Wert<br>0 zu senden.                                                                                                                                 |
| 3     |     | setp_GenPower        | 0 250 [%]<br>(scPercent)            | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4040:0x05) | Generatorische Leistungsgrenze<br>für Ausgang INV A.<br>Wenn nicht benutzt, ist der Wert<br>0 zu senden.                                                                                                                             |
| 4 - 5 |     | setp_Speed           | -32000<br>32255 [rpm]<br>(scVeloc1) | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4040:0x05) | Velocity mode: Drehzahlsollwert<br>für Motor A<br>Torque mode: Drehzahlgrenze<br>für Drehzahlklammerung                                                                                                                              |
| 6-7   |     | setp_Torque          | -6400<br>6451 [Nm]<br>(scTorque1)   | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4040:0x05) | Torque mode: Drehmomentsollwert für Motor A                                                                                                                                                                                          |

# 7.3 Public CAN receive messages

------

# 7.3.3 Sollwerte für Motor B

| CAN-ID                                  |  | Zykluszeit | Timeout-Zeit | Sender | Empfänger    |
|-----------------------------------------|--|------------|--------------|--------|--------------|
| 0x18FFz2yy Prio: 6, PGN: 0xFFz2, SA: yy |  | 100 ms     | 500 ms       | уу     | MOBILE Nr. z |
| z = address offse  ▶ Geräte-Identifik   |  |            |              |        |              |

| Byte  | Bit | Name                 | Wertebereich<br>(Skalierung)        | Timeout-Wert                                                           | Info                                                                                                                                                                                                                                 |
|-------|-----|----------------------|-------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0 1 | ctrlDCU              | 0 3                                 | letzter Wert                                                           | Drive Control Unit (DCU): 0: DCU ausschalten 1: DCU einschalten 2: Reserviert 3: Keine Angabe                                                                                                                                        |
|       | 2 7 | -                    | -                                   | -                                                                      | Reserviert                                                                                                                                                                                                                           |
| 1     |     | setp_DcLinkTolerance | 0 1000 [V]<br>(scVolt2)             | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4050:0x05) | Dieser Wert wird zum Sollwert setp DcLinkVoltage addiert bzw. davon subtrahiert, um den für ein Derating benötigten Maximal- und Minimalwert der DC-Zwischenkreisspannung zu erhalten. Wenn nicht benutzt, ist der Wert 0 zu senden. |
| 2     |     | setp_MotPower        | 0 250 [%]<br>(scPercent)            | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4040:0x05) | Motorische Leistungsgrenze für<br>Ausgang INV B.<br>Wenn nicht benutzt, ist der Wert<br>0 zu senden.                                                                                                                                 |
| 3     |     | setp_GenPower        | 0 250 [%]<br>(scPercent)            | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4040:0x05) | Generatorische Leistungsgrenze<br>für Ausgang INV B.<br>Wenn nicht benutzt, ist der Wert<br>0 zu senden.                                                                                                                             |
| 4 - 5 |     | setp_Speed           | -32000<br>32255 [rpm]<br>(scVeloc1) | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4050:0x05) | Velocity mode: Drehzahlsollwert<br>für Motor B<br>Torque mode: Drehzahlgrenze<br>für Drehzahlklammerung                                                                                                                              |
| 6-7   |     | setp_Torque          | -6400<br>6451 [Nm]<br>(scTorque1)   | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4050:0x05) | Torque mode: Drehmomentsoll-<br>wert für Motor A                                                                                                                                                                                     |

# 7.3 Public CAN receive messages

\_\_\_\_\_\_

## 7.3.4 Sollwerte für Bordnetzwandler

| CAN-ID                                    |  | Zykluszeit | Timeout-Zeit | Sender | Empfänger    |  |
|-------------------------------------------|--|------------|--------------|--------|--------------|--|
| 0x18FFz3yy Prio: 6, PGN: 0xFFz3, SA: yy   |  | 100 ms     | 500 ms       | уу     | MOBILE Nr. z |  |
| z = address offset -  Geräte-Identifikati |  |            |              |        |              |  |

| Byte  | Bit | Name                             | Wertebereich<br>(Skalierung)     | Timeout-Wert                                                           | Info                                                                                                                                                                                                                                 |
|-------|-----|----------------------------------|----------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0 1 | ctrlPSU                          | 0 3                              | letzter Wert                                                           | Power Supply Unit (PSU): 0: PSU ausschalten 1: PSU einschalten 2: Reserviert 3: Keine Angabe                                                                                                                                         |
|       | 2 7 | -                                | -                                | -                                                                      | Reserviert                                                                                                                                                                                                                           |
| 1     |     | setp_DcLinkTolerance             | 0 1000 [V]<br>(scVolt2)          | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4060:0x05) | Dieser Wert wird zum Sollwert setp DcLinkVoltage addiert bzw. davon subtrahiert, um den für ein Derating benötigten Maximal- und Minimalwert der DC-Zwischenkreisspannung zu erhalten. Wenn nicht benutzt, ist der Wert 0 zu senden. |
| 2 - 3 |     | -                                | -                                | -                                                                      | Reserviert                                                                                                                                                                                                                           |
| 4     |     | setp_Voltage                     | 0 50 [V]<br>(scVolt1)            | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4060:0x05) | Spannungssollwert für DC/DC-<br>Wandler                                                                                                                                                                                              |
| 5     |     | -                                | -                                | -                                                                      | Reserviert                                                                                                                                                                                                                           |
| 4 - 5 |     | setp_Voltage<br>(ab Version 5.4) | 0 64.255 [V]<br>(scVolt1)        | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4060:0x05) | Spannungssollwert für DC/DC-<br>Wandler                                                                                                                                                                                              |
| 6-7   |     | setp_ MaxCurrent                 | -1600<br>1612.75 [A]<br>(scCur1) | letzter Wert<br>oder Default-<br>Wert<br>(abhängig von<br>0x4060:0x05) | Maximaler Ausgangsstrom für DC/DC-Wandler Im Slave-Mode (mehrere DC/DC-Wandler parallel) wird dieser Wert auf den Stromistwert des DC/DC-Masters gesetzt.                                                                            |

## 7.4 Public CAN transmit messages

\_\_\_\_\_

# 7.4 Public CAN transmit messages

## Übersicht

In der folgenden Tabelle sind alle Sendebotschaften aufgeführt.

- Die Identifier basieren auf der Voreinstellung des MOBILE:
  - CAN-Adresse des MOBILE = 234 (0xEA)
  - Gerätenummer = 1 (MOBILE 1)
- CAN-Adresse der übergeordneten Steuerung = 128 (0x80)
- Die Zykluszeit ist für alle Meldungen auf 100 ms voreingestellt.

| CAN-ID                           |            |     | МО  | BILE       |       | Name               | Ausführliche Beschreibung                |
|----------------------------------|------------|-----|-----|------------|-------|--------------------|------------------------------------------|
| [decimal]                        | [hex]      | PSU | DCU | DCU<br>PSU | DCU S |                    |                                          |
| Prio: 6<br>PGN: 65280<br>SA: 234 | 0x18FF00EA | Т   | Т   | Т          | Т     | Transmit message 0 | ► Gerätestatus des MOBILE                |
| Prio: 6<br>PGN: 65281<br>SA: 234 | 0x18FF01EA | -   | Т   | -          | Т     | Transmit message 1 | ▶ <u>Istwerte vom Motor A</u>            |
| Prio: 6<br>PGN: 65282<br>SA: 234 | 0x18FF02EA | -   | Т   | Т          | -     | Transmit message 2 | ► <u>Istwerte vom Motor B</u>            |
| Prio: 6<br>PGN: 65283<br>SA: 234 | 0x18FF03EA | Т   | -   | Т          | -     | Transmit message 3 | ► <u>Istwerte vom</u><br>Bordnetzwandler |

# 7.4 Public CAN transmit messages

------

# 7.4.1 Gerätestatus des MOBILE

| CAN-ID     |                              | Zykluszeit | Sender    | Empfänger |
|------------|------------------------------|------------|-----------|-----------|
| 0x18FF00yy | Prio: 6, PGN: 0xFF00, SA: yy | 100 ms     | MOBILE yy | Alle      |

| Byte  | Bit | Name                                                     | Wertebereich<br>(Skalierung)    | Info                                                                                                                                              |
|-------|-----|----------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0 1 | DeviceState                                              | 0 3                             | Status der Geräteidentifikation: 0: Initialisierung beendet 1: Initialisierung aktiv 2: Reserviert 3: Keine Angabe                                |
|       | 2 3 | ErrorLamp                                                | 0 3                             | Status der Fehler-LED am Gerät<br>(als Sammelfehlermeldung):<br>0: Fehler-LED aus<br>1: Fehler-LED an<br>2: Reserviert<br>3: Keine Angabe         |
|       | 4 7 | DeviceNumber                                             | 0 15                            | Gerätenummer (abhängig von<br>der Belegung der ID-Pins):<br>0: Nicht definiert<br>1 14: Gerätenummer<br>15: Keine Angabe                          |
| 1     | 0 1 | Clamp15_Status                                           | 0 3                             | Status der Klemme 15: 0: Kein Klemme-15-Signal 1: Klemme-15-Signal 2: Reserviert 3: Keine Angabe                                                  |
|       | 2 3 | DCLinkChargeState                                        | 0 3                             | Status der Vorladung: 0: Vorladung nicht beendet 1: Vorladung beendet 2: Entladung beendet (ab Firmware R6.4) 3: Keine Angabe  Precharge-Funktion |
|       | 4 5 | Status_Bit_Flex_In_Out<br>_Signal1<br>(Ab Firmware R6.3) | 0 3                             | Zustände der gemappten<br>FLX_IN/OUT:<br>0: LOW-Signal (oder kein                                                                                 |
|       | 6 7 | Status_Bit_Flex_In_Out<br>_Signal2<br>(Ab Firmware R6.3) | 0 3                             | FLX_IN/OUT gemappt) 1: HIGH-Signal 2: Nicht definiert 3: Keine Angabe Mapping Signal 1: 0x4025:0x02 Mapping Signal 2: 0x4025:0x03                 |
| 2-3   |     | ErrorCode                                                | 0 65535                         | Fehlercode:  0: Kein Fehler  1 65535: Fehlermeldung  ▶ Fehlermeldungen, Ursachen & mögliche Abhilfen                                              |
| 4     |     | act_DCBusVoltage                                         | 0 1000 [V]<br>(scVolt2)         | Aktuelle DC-Zwischenkreisspan-<br>nung                                                                                                            |
| 5 - 6 |     | act_DCBusPower                                           | -160 161.275 [kW]<br>(scPower1) | Aktuelle DC-Zwischenkreisleis-<br>tung (hochgerechnet)                                                                                            |
| 7     |     | act_DeviceTemperature                                    | -40 210 [°C]<br>(scTemp1)       | Aktuelle Gerätetemperatur (PCB)                                                                                                                   |

# 7.4 Public CAN transmit messages

------

# 7.4.2 Istwerte vom Motor A

| CAN-ID     |                              | Zykluszeit | Sender    | Empfänger |
|------------|------------------------------|------------|-----------|-----------|
| 0x18FF01yy | Prio: 6, PGN: 0xFF01, SA: yy | 100 ms     | MOBILE yy | Alle      |

| Byte  | Bit | Name                 | Wertebereich<br>(Skalierung)             | Info                                                                                                                                           |
|-------|-----|----------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0 1 | act_InverterStatus   | 0 3                                      | Status des Leistungsteils: 0: Leistungsteil gesperrt 1: Leistungsteil freigegeben 2: Reserviert 3: Keine Angabe                                |
|       | 2 3 | act_InverterReady    | 0 3                                      | Status des "InverterReady"-Sig-<br>nals:<br>0: Inverter nicht betriebsbereit<br>1: Inverter betriebsbereit<br>2: Reserviert<br>3: Keine Angabe |
|       | 4 5 | act_ErrorStatus      | 0 3                                      | Fehlerstatus Inverter/Motor 0: Kein Fehler 1: Fehler 2: Warnung 3: Keine Angabe                                                                |
|       | 6 7 | -                    | -                                        | Reserviert                                                                                                                                     |
| 1-2   |     | act_Speed            | -32000 32255 [rpm]<br>(scVeloc1)         | Aktuelle Drehzahl                                                                                                                              |
| 3 - 4 |     | act_Torque           | -6400 6451 [Nm]<br>(scTorque1)           | Aktuelles Drehmoment Ab Firmware R6.3: Das Mapping kann in 0x4025:0x04 geändert werden.                                                        |
| 5 - 6 |     | act_Power            | -160 161.275 [kW]<br>( <u>scPower1</u> ) | Aktuelle Ausgangsleistung                                                                                                                      |
| 7     |     | act_MotorTemperature | -40 210 [°C]<br>(scTemp1)                | Aktuelle Temperatur Ab Firmware R6.3: Das Mapping kann in 0x4025:0x05 geändert werden.                                                         |

## 7 Public CAN

## 7.4 Public CAN transmit messages

------

## 7.4.3 Istwerte vom Motor B

| CAN-ID     |                              | Zykluszeit | Sender    | Empfänger |
|------------|------------------------------|------------|-----------|-----------|
| 0x18FF02yy | Prio: 6, PGN: 0xFF02, SA: yy | 100 ms     | MOBILE yy | Alle      |

| Byte  | Bit | Name                 | Wertebereich<br>(Skalierung)             | Info                                                                                                                                           |
|-------|-----|----------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0 1 | act_InverterStatus   | 0 3                                      | Status des Leistungsteils: 0: Leistungsteil gesperrt 1: Leistungsteil freigegeben 2: Reserviert 3: Keine Angabe                                |
|       | 2 3 | act_InverterReady    | 0 3                                      | Status des "InverterReady"-Sig-<br>nals:<br>0: Inverter nicht betriebsbereit<br>1: Inverter betriebsbereit<br>2: Reserviert<br>3: Keine Angabe |
|       | 4 5 | act_ErrorStatus      | 0 3                                      | Fehlerstatus Inverter/Motor 0: Kein Fehler 1: Fehler 2: Warnung 3: Keine Angabe                                                                |
|       | 6 7 | -                    | -                                        | Reserviert                                                                                                                                     |
| 1-2   |     | act_Speed            | -32000 32255 [rpm]<br>(scVeloc1)         | Aktuelle Drehzahl                                                                                                                              |
| 3 - 4 |     | act_Torque           | -6400 6451 [Nm]<br>(scTorque1)           | Aktuelles Drehmoment Ab Firmware R6.3: Das Mapping kann in 0x4025:0x06 geändert werden.                                                        |
| 5 - 6 |     | act_Power            | -160 161.275 [kW]<br>( <u>scPower1</u> ) | Aktuelle Ausgangsleistung                                                                                                                      |
| 7     |     | act_MotorTemperature | -40 210 [°C]<br>(scTemp1)                | Aktuelle Temperatur Ab Firmware R6.3: Das Mapping kann in 0x4025:0x07 geändert werden.                                                         |

## 7 Public CAN

## 7.4 Public CAN transmit messages

\_\_\_\_\_\_

### 7.4.4 Istwerte vom Bordnetzwandler

| CAN-ID     |                              | Zykluszeit | Sender    | Empfänger |
|------------|------------------------------|------------|-----------|-----------|
| 0x18FF03yy | Prio: 6, PGN: 0xFF03, SA: yy | 100 ms     | MOBILE yy | Alle      |

| Byte  | Bit | Name                            | Wertebereich<br>(Skalierung)             | Info                                                                                                                                           |
|-------|-----|---------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0 1 | act_InverterStatus              | 0 3                                      | Status des Leistungsteils: 0: Leistungsteil gesperrt 1: Leistungsteil freigegeben 2: Reserviert 3: Keine Angabe                                |
|       | 2 3 | act_InverterReady               | 0 3                                      | Status des "InverterReady"-Sig-<br>nals:<br>0: Inverter nicht betriebsbereit<br>1: Inverter betriebsbereit<br>2: Reserviert<br>3: Keine Angabe |
|       | 4 5 | act_ErrorStatus                 | 0 3                                      | Fehlerstatus Inverter A (DC/DC) 0: Kein Fehler 1: Fehler 2: Warnung 3: Keine Angabe                                                            |
|       | 6 7 | -                               | -                                        | Reserviert                                                                                                                                     |
| 1     |     | act_Voltage                     | 0 50 [V]<br>(scVolt1)                    | Aktuelle DC/DC-Spannung                                                                                                                        |
| 2     |     | -                               | -                                        | Reserviert                                                                                                                                     |
| 1-2   |     | act_Voltage<br>(ab Version 5.4) | 0 64.255 [V]<br>(scVolt1)                | Aktuelle DC/DC-Spannung                                                                                                                        |
| 3 - 4 |     | act_Current                     | -1600 1612.75 [A]<br>(scCur1)            | Aktueller DC/DC-Strom                                                                                                                          |
| 5 - 6 |     | act_Power                       | -160 161.275 [kW]<br>( <u>scPower1</u> ) | Aktuelle Ausgangsleistung                                                                                                                      |
| 7     |     | act_Temperature                 | -40 210 [°C]<br>(scTemp1)                | Aktuelle Temperatur Ab Firmware R6.3: Das Mapping kann in 0x4025:0x08 geändert werden.                                                         |

#### 8.1 Genereller Aufbau der Diagnosebotschaften

.\_\_\_\_\_

## 8 Unified Diagnostic Services (UDS)

Für die Übertragung von Diagnosebotschaften über CAN-Bus wird das ISO-Transportprotokoll (ISO 15765-2) verwendet.



Informationen zur Implementierung der Unified Diagnostic Services finden Sie in der ISO 15765, Part 3: "Implementation of unified diagnostic services (UDS on CAN)".

### 8.1 Genereller Aufbau der Diagnosebotschaften

| Typ der Botschaft        | Byte 0         | Byte 1           | Byte 2                        | Byte 4 n      |   |  |  |
|--------------------------|----------------|------------------|-------------------------------|---------------|---|--|--|
| Request ohne Subfunktion | Message length | Service-ID (SID) | Request-Parameter             |               |   |  |  |
| Request mit Subfunktion  | Message length | Service-ID (SID) | Subfunktion Request-Parameter |               |   |  |  |
| Positive Response        | Message length | SID + 0x40       | Response-Parameter            |               |   |  |  |
| Negative Response        | Message length | Error-ID (0x7F)  | Request-SID                   | Response Code | - |  |  |

<sup>▶</sup> Beispiel: SAG Bootloader Name auslesen (🕮 195)

#### 8.2 Protokollservices

In diesem Kapitel sind alle vom MOBILE unterstützten Protokollservices ausführlich beschrieben.

Die Übersichtstabelle "<u>Services & Dienste</u>" im folgenden Unterkapitel gibt Ihnen einen ersten Überblick über die unterstützten Protokollservices und enthält zahlreiche Zusatzinformationen zu jedem Service.

#### Übersicht "Services & Dienste" 8.2.1

In der folgenden Tabelle sind alle vom MOBILE unterstützten Protokollservices aufgeführt. Informationen zur Bedeutung der einzelnen Spalten finden Sie hier.

| Service/Dienst                             | Request (Präfix) | ● = Dienst in Se | ession möglich (Session     | nach Ausführung) | Request  |            | Positive response |            | SPRMIB   |            | erforder- |
|--------------------------------------------|------------------|------------------|-----------------------------|------------------|----------|------------|-------------------|------------|----------|------------|-----------|
|                                            |                  | Default          | Programming<br>(Bootloader) | Extended         | physical | functional | physical          | functional | physical | functional | lich      |
| \$10: Diagnostic Session Control           |                  |                  |                             |                  |          |            |                   |            |          |            |           |
| - Default Session                          | 10 01            | •                | ● (Default)                 | • (Default)      | •        | •          | •                 | •          | 0/1      | 0/1        | •         |
| - Programming Session                      | 10 02            | -                | • (Programming)             | • (Programming)  | •        | •          | •                 | •          | 0/1      | 0/1        | •         |
| - Extended Diagnostic Session              | 10 03            | • (Extended)     | • (Extended)                | • (Extended)     | •        | •          | •                 | •          | 0/1      | 0/1        | •         |
| \$11: ECU Reset                            |                  |                  |                             | •                |          |            |                   |            |          |            |           |
| - Hard Reset                               | 11 01            | •                | • (Default)                 | • (Default)      | •        | •          | •                 | •          | 0/1      | 0/1        | -         |
| \$14: Clear Diagnostic Information         | 14 xx            | •                | -                           | •                | •        | •          | •                 | •          | -        | -          | -         |
| \$19: Read DTC Information                 |                  |                  |                             |                  |          |            |                   |            |          |            |           |
| - Report number of DTC by status mask      | 19 01 xx         | •                | -                           | •                | •        | •          | •                 | •          | 0/1      | 0/1        | -         |
| - Report DTC by status mask                | 19 02 xx         | •                | -                           | •                | •        | •          | •                 | •          | 0/1      | 0/1        | -         |
| - Report DTC snapshot record by DTC number | 19 04 xx         | •                | -                           | •                | •        | •          | •                 | •          | 0/1      | 0/1        | -         |
| - Report supported DTC                     | 19 0A            | •                | -                           | •                | •        | •          | •                 | •          | 0/1      | 0/1        | -         |
| \$22: Read Data By Identifier              |                  |                  |                             |                  |          |            |                   |            |          |            |           |
| - SAG Dataset Version                      | 22 F1 F8 xx      | •                | -                           | •                | •        | •          | •                 | •          | -        | -          | -         |
| - SAG Device Hardware Version              | 22 F1 F7 xx      | •                | -                           | •                | •        | •          | •                 | •          | -        | -          | -         |
| - SAG Device Serial Number                 | 22 F1 F6 xx      | •                | -                           | •                | •        | •          | •                 | •          | -        | -          | -         |
| - SAG Device Product Type                  | 22 F1 F5 xx      | •                | -                           | •                | •        | •          | •                 | •          | -        | -          | -         |
| - Read Fingerprint                         | 22 F1 5B xx      | •                | -                           | •                | •        | •          | •                 | •          | -        | -          | -         |
| - SAG Application Data Size                | 22 F1 F4 xx      | •                | -                           | •                | •        | •          | •                 | •          | -        | -          | -         |
| - SAG Firmware Name                        | 22 F1 F0 xx      | •                | -                           | •                | •        | •          | •                 | •          | -        | -          | -         |
| - SAG Bootloader Name                      | 22 F1 F1 xx      | •                | •                           | •                | •        | •          | •                 | •          | -        | -          | -         |
| - SAG Dataset Name                         | 22 F1 F2 xx      | •                | -                           | •                | •        | •          | •                 | •          | -        | -          | -         |
| - SAG Dataset Size                         | 22 F1 F3 xx      | •                | -                           | •                | •        | •          | •                 | •          | -        | -          | -         |
| \$27: Security Access                      | ·                | ·                | •                           |                  |          |            |                   |            |          |            |           |
| - Request seed                             | 27 11            | -                | •                           | •                | •        | •          | •                 | •          | 0/1      | 0/1        | -         |
| - Send key                                 | 27 12 xx         | -                | •                           | •                | •        | •          | •                 | •          | 0/1      | 0/1        | -         |

8.2 ∞

| Service/Dienst Request (Präfix)   |                | ● = Dienst in Session möglich (Session nach Ausführung) |                             | Request  |          | Positive response |          | SPRMIB     |          | erforder-  |      |
|-----------------------------------|----------------|---------------------------------------------------------|-----------------------------|----------|----------|-------------------|----------|------------|----------|------------|------|
|                                   |                | Default                                                 | Programming<br>(Bootloader) | Extended | physical | functional        | physical | functional | physical | functional | lich |
| \$28: Communication Control       |                |                                                         |                             |          |          |                   |          |            |          |            |      |
| - EnableRxAndEnableTx             | 28 00 xx       | -                                                       | -                           | •        | •        | •                 | •        | •          | 0/1      | 0/1        | -    |
| - EnableRxAndDisableTx            | 28 01 xx       | -                                                       | -                           | •        | •        | •                 | •        | •          | 0/1      | 0/1        |      |
| \$31: Routine Control             |                |                                                         |                             |          |          |                   |          |            |          |            |      |
| - Fault Reset                     | 31 01 F2 00 xx |                                                         | -                           | •        | •        | •                 | •        | •          | 0/1      | 0/1        | -    |
| - EnablePrivateCAN                | 31 01 F1 00 xx |                                                         | -                           | •        | •        | •                 | •        | •          | 0/1      | 0/1        | -    |
| - Restore Parameter Set           | 31 01 FE 02 xx |                                                         | -                           | •        | •        | •                 | •        | •          | 0/1      | 0/1        | -    |
| - Store Parameter Set             | 31 01 FE 01 xx |                                                         | -                           | •        | •        | •                 | •        | •          | 0/1      | 0/1        | -    |
| - Check Programming Preconditions | 31 01 02 03 xx | -                                                       | •                           | •        | •        | •                 | •        | •          | 0/1      | 0/1        | -    |
| \$34: Request Download            | 34 xx xx       | -                                                       | •                           | -        | •        | •                 | •        | •          | -        | -          | -    |
| \$35: Request Upload              | 35 xx xx       | -                                                       | -                           | •        | •        | •                 | •        | •          | -        | -          | -    |
| \$36: Transfer Data               | 36 xx          | -                                                       | •                           | •        | •        | (●)               | •        | (●)        | -        | -          | -    |
| \$37: Request Transfer Exit       | 37 xx          | -                                                       | •                           | •        | •        | •                 | •        | •          | -        | -          | -    |
| \$3E: Tester Present              | 3E 00          | •                                                       | •                           | •        | •        | •                 | •        | •          | 0/1      | 0/1        | •    |
| \$85: Control DTC Setting         |                |                                                         |                             |          |          |                   |          |            |          |            |      |
| - On                              | 85 01 xx       | -                                                       | -                           | •        | •        | •                 | •        | •          | 0/1      | 0/1        | -    |
| - Off                             | 85 02 xx       | -                                                       | -                           | •        | •        | •                 | •        | •          | 0/1      | 0/1        | -    |

8° ∞

### So lesen Sie die Übersichtstabelle:

| Spalte                               | Bedeutung                                                                                                                                                                        |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Service/Dienst                       | SID und Name des Services / Name der Subfunktion                                                                                                                                 |
| Request (Präfix)                     | Präfix der Byte-Folge für den Request                                                                                                                                            |
| Zustandsabhängigkeiten               |                                                                                                                                                                                  |
| Default/Programming/Extended         | • = Der Dienst ist in der jeweiligen Session ausführbar. Befindet sich der MOBILE nach der Ausführung des Dienstes in einer anderen Session, so ist diese in Klammern angegeben. |
| Voreingestellte Adressierungsmetho   | de                                                                                                                                                                               |
| Request: physical                    | • = Testsystem sendet physikalischen Request                                                                                                                                     |
| Request: functional                  | = Testsystem sendet funktionalen Request     (•) = In der Diagnose-Instanz sind Services vorhanden, die von dieser Voreinstellung abweichen.                                     |
| Voreingestelltes Antwortverhalten    |                                                                                                                                                                                  |
| Positive response: physical          | • = MOBILE sendet physikalischen Positive Response                                                                                                                               |
| Positive response: functional        | <ul> <li>■ = MOBILE sendet funktionalen Positive Response</li> <li>(●) = In der Diagnose-Instanz sind Services vorhanden, die von dieser Voreinstellung abweichen.</li> </ul>    |
| SPRMIP - Suppress Positive Message I | ndication Bit                                                                                                                                                                    |
| SPRMIB: physical                     | Testsystem soll das SPRMIB im physikalischen Request setzen:  1 = immer (SPRMIB ist immer 1)  0/1 = benutzerdefiniert (SPRMIB kann 0 oder 1 sein)  0 = nie (SPRMIB ist immer 0)  |
| SPRMIB: functional                   | Testsystem soll das SPRMIB im funktionalen Request setzen:  1 = immer (SPRMIB ist immer 1)  0/1 = benutzerdefiniert (SPRMIB kann 0 oder 1 sein)  0 = nie (SPRMIB ist immer 0)    |
| Weitere Angaben                      |                                                                                                                                                                                  |
| erforderlich                         | • = Es gibt mindestens einen Service in einer erforderlichen, aktivierten Diagnose-Instanz der Basis-Variante                                                                    |

#### 8.2 Protokollservices

------

### 8.2.2 \$10: Diagnostic Session Control

Mit diesem Service kann man in eine andere Session wechseln.

- Beim Start befindet sich der MOBILE standardmäßig in der "Default Session".
- Je nachdem, welche Session gerade aktiv ist, sind unterschiedliche Dienste freigeschaltet.

| Request |              |     |                                                                                         |  |  |  |
|---------|--------------|-----|-----------------------------------------------------------------------------------------|--|--|--|
| Byte    | Name         | Cvt | Wert                                                                                    |  |  |  |
| 1       | SID-RQ       | M   | \$10                                                                                    |  |  |  |
| 2       | Subfunction* | M   | \$01: Default Session<br>\$02: Programming Session<br>\$03: Extended Diagnostic Session |  |  |  |

| Positiv | Positive Response      |     |                                                                                         |  |  |  |  |  |
|---------|------------------------|-----|-----------------------------------------------------------------------------------------|--|--|--|--|--|
| Byte    | Name                   | Cvt | Wert                                                                                    |  |  |  |  |  |
| 1       | SID-PR                 | M   | \$50                                                                                    |  |  |  |  |  |
| 2       | Subfunction            | M   | \$01: Default Session<br>\$02: Programming Session<br>\$03: Extended Diagnostic Session |  |  |  |  |  |
| 3 - 6   | SessionParameterRecord | М   |                                                                                         |  |  |  |  |  |

| Negati | Negative Response |                                        |        |                                  |  |  |  |  |
|--------|-------------------|----------------------------------------|--------|----------------------------------|--|--|--|--|
| Byte   | Name              |                                        | Cvt    | Wert                             |  |  |  |  |
| 1      | SID-NR            |                                        | M      | \$7F                             |  |  |  |  |
| 2      | SIDRQ-            | NR                                     | M      | \$10                             |  |  |  |  |
| 3      | Response Code     |                                        | M      | ▶ <u>Negative Response Codes</u> |  |  |  |  |
|        | Wert              | Bedeutung                              |        |                                  |  |  |  |  |
|        | 0x12              | Subfunction not supported              |        |                                  |  |  |  |  |
|        | 0x13              | Incorrect message length or invalid fo | rmat   |                                  |  |  |  |  |
|        | 0x22              | Conditions not correct                 |        |                                  |  |  |  |  |
|        | 0x7E              | Subfunction not supported in active s  | ession |                                  |  |  |  |  |



#### Tipp!

Der Übersichtstabelle "<u>Services & Dienste</u>" können Sie entnehmen, welche Dienste in welcher Session ausgeführt werden dürfen und in welchem Zustand sich der MOBILE nach der Ausführung des Dienstes befindet.

### 8.2 Protokollservices

------

#### 8.2.3 \$11: ECU Reset

Mit diesem Service lässt sich der MOBILE neu starten. Der "Hard Reset" simuliert die Unterbrechung der Spannungsversorgung.

| Reque       | Request                                                              |     |                  |  |  |  |  |
|-------------|----------------------------------------------------------------------|-----|------------------|--|--|--|--|
| Byte        | Name                                                                 | Cvt | Wert             |  |  |  |  |
| 1           | SID-RQ                                                               | M   | \$11             |  |  |  |  |
| 2           | Subfunction*                                                         | М   | \$01: Hard Reset |  |  |  |  |
| * Bit 7 = 5 | * Bit 7 = Suppress Positive Response Message Indication Bit (SPRMIB) |     |                  |  |  |  |  |

| Positiv | Positive Response |     |                  |  |  |  |  |
|---------|-------------------|-----|------------------|--|--|--|--|
| Byte    | Name              | Cvt | Wert             |  |  |  |  |
| 1       | SID-PR            | M   | \$51             |  |  |  |  |
| 2       | Subfunction       | M   | \$01: Hard Reset |  |  |  |  |
| 3       | PowerDownTime     | U   |                  |  |  |  |  |

| Negat                       | Negative Response                               |                           |   |                                  |  |  |
|-----------------------------|-------------------------------------------------|---------------------------|---|----------------------------------|--|--|
| Byte                        | Name                                            | Name                      |   | Wert                             |  |  |
| 1                           | SID-NR                                          |                           | M | \$7F                             |  |  |
| 2                           | SIDRQ-NR                                        |                           | M | \$11                             |  |  |
| 3                           | Respor                                          | nse Code                  | M | ► <u>Negative Response Codes</u> |  |  |
|                             | Wert                                            | Bedeutung                 |   |                                  |  |  |
|                             | 0x12                                            | Subfunction not supported |   |                                  |  |  |
|                             | 0x13 Incorrect message length or invalid format |                           |   |                                  |  |  |
|                             | 0x22 Conditions not correct                     |                           |   |                                  |  |  |
| 0x33 Security access denied |                                                 |                           |   |                                  |  |  |

BUCHER
hydraulics 300-I-9052004-DE-04/09.2023

### 8.2 Protokollservices

\_\_\_\_\_

## 8.2.4 \$14: Clear Diagnostic Information

Mit diesem Service lässt sich der gesamte Fehlerspeicher des MOBILE oder auch nur eine bestimmte Gruppe von Fehlern löschen.

| Reques | Request    |     |      |  |  |  |
|--------|------------|-----|------|--|--|--|
| Byte   | Name       | Cvt | Wert |  |  |  |
| 1      | SID-RQ     | М   | \$14 |  |  |  |
| 2 - 4  | GroupOfDtc | М   |      |  |  |  |

| Positive Response |        |     |      |  |  |  |
|-------------------|--------|-----|------|--|--|--|
| Byte              | Name   | Cvt | Wert |  |  |  |
| 1                 | SID-PR | M   | \$54 |  |  |  |

| Negati | Negative Response                               |           |     |                                  |  |  |  |
|--------|-------------------------------------------------|-----------|-----|----------------------------------|--|--|--|
| Byte   | Name                                            |           | Cvt | Wert                             |  |  |  |
| 1      | SID-NR                                          |           | М   | \$7F                             |  |  |  |
| 2      | SIDRQ-NR                                        |           | M   | \$14                             |  |  |  |
| 3      | Respor                                          | ise Code  | M   | ▶ <u>Negative Response Codes</u> |  |  |  |
|        | Wert                                            | Bedeutung |     |                                  |  |  |  |
|        | 0x13 Incorrect message length or invalid format |           |     |                                  |  |  |  |
|        | 0x22 Conditions not correct                     |           |     |                                  |  |  |  |
|        | 0x31 Request out of range                       |           |     |                                  |  |  |  |

8.2 Protokollservices

\_\_\_\_\_

### 8.2.5 \$19: Read DTC Information

Mit diesem Service lässt sich der Fehlerspeicher des MOBILE auslesen.

| Subfunktion                                    | Info |
|------------------------------------------------|------|
| \$01: Report number of DTC by status mask      |      |
| \$02: Report DTC by status mask                |      |
| \$04: Report DTC snapshot record by DTC number |      |
| \$0A: Report supported DTC                     |      |



Weitere Informationen zum Fehlerspeicher des MOBILE finden Sie im Kapitel "Diagnose & Fehlermanagement". ▶ Fehlerspeicher (□ 219)

## 8.2 Protokollservices

-----

### Report number of DTC by status mask

| Reque       | Request    |                                                  |     |                                           |  |  |
|-------------|------------|--------------------------------------------------|-----|-------------------------------------------|--|--|
| Byte        | Name       |                                                  | Cvt | Wert                                      |  |  |
| 1           | SID-RQ     |                                                  | M   | \$19                                      |  |  |
| 2           | Subfur     | rction*                                          | M   | \$01: Report number of DTC by status mask |  |  |
| 3           | DTCSta     | tusMask                                          | M   |                                           |  |  |
|             | Bit        | Bedeutung                                        |     |                                           |  |  |
|             | 0          | Test failed                                      |     |                                           |  |  |
|             | 1          | Test failed this operation cycle                 |     |                                           |  |  |
|             | 2          | Reserviert                                       |     |                                           |  |  |
|             | 3          | Confirmed DTC                                    |     |                                           |  |  |
|             | 4          | Reserviert                                       |     |                                           |  |  |
|             | 5          | Test failed since last clear                     |     |                                           |  |  |
|             | 6          | Reserviert                                       |     |                                           |  |  |
|             | 7          | Reserviert                                       |     |                                           |  |  |
| * Bit 7 = 5 | Suppress P | ositive Response Message Indication Bit (SPRMIB) |     |                                           |  |  |

| Positiv | Positive Response   |                                  |        |                                           |  |
|---------|---------------------|----------------------------------|--------|-------------------------------------------|--|
| Byte    | Name                |                                  | Cvt    | Wert                                      |  |
| 1       | SID-PR              |                                  | M      | \$59                                      |  |
| 2       | Subfur              | oction                           | M      | \$01: Report number of DTC by status mask |  |
| 3       | DTCSta              | tusAvailabilityMask              | M      |                                           |  |
|         | Bit                 | Bedeutung                        |        |                                           |  |
|         | 0                   | Test failed                      |        |                                           |  |
|         | 1                   | Test failed this operation cycle |        |                                           |  |
|         | 2                   | Reserviert                       |        |                                           |  |
|         | 3                   | Confirmed DTC                    |        |                                           |  |
|         | 4                   | Reserviert                       |        |                                           |  |
|         | 5                   | Test failed since last clear     |        |                                           |  |
|         | 6                   | Reserviert                       |        |                                           |  |
|         | 7                   | Reserviert                       |        |                                           |  |
| 4       | DTCFormatIdentifier |                                  | M      |                                           |  |
| 5 - 6   | DTCCount            |                                  | M (fd) |                                           |  |

| Negative Response |                                |                                              |     |                                  |  |  |  |
|-------------------|--------------------------------|----------------------------------------------|-----|----------------------------------|--|--|--|
| Byte              | Name                           |                                              | Cvt | Wert                             |  |  |  |
| 1                 | SID-NR                         |                                              | М   | \$7F                             |  |  |  |
| 2                 | SIDRQ-NR                       |                                              | M   | \$19                             |  |  |  |
| 3                 | Respor                         | se Code                                      | M   | ▶ <u>Negative Response Codes</u> |  |  |  |
|                   | Wert                           | Bedeutung                                    |     |                                  |  |  |  |
|                   | 0x12 Subfunction not supported |                                              |     |                                  |  |  |  |
|                   | 0x13                           | 3 Incorrect message length or invalid format |     |                                  |  |  |  |
|                   | 0x31                           | Request out of range                         |     |                                  |  |  |  |

## 8.2 Protokollservices

-----

### Report DTC by status mask

| Reque     | Request    |                                                  |     |                                 |  |  |
|-----------|------------|--------------------------------------------------|-----|---------------------------------|--|--|
| Byte      | Name       |                                                  | Cvt | Wert                            |  |  |
| 1         | SID-RQ     | !                                                | M   | \$19                            |  |  |
| 2         | Subfur     | nction*                                          | М   | \$02: Report DTC by status mask |  |  |
| 3         | DTCSta     | atusMask                                         | M   |                                 |  |  |
|           | Bit        | Bedeutung                                        |     |                                 |  |  |
|           | 0          | Test failed                                      |     |                                 |  |  |
|           | 1          | Reserviert                                       |     |                                 |  |  |
|           | 2          | Reserviert                                       |     |                                 |  |  |
|           | 3          | Confirmed DTC                                    |     |                                 |  |  |
|           | 4          | Test not completed since last clear              |     |                                 |  |  |
|           | 5          | Test failed since last clear                     |     |                                 |  |  |
|           | 6          | Test not completed this monitoring cycle         |     |                                 |  |  |
|           | 7          | Reserviert                                       |     |                                 |  |  |
| * Bit 7 = | Suppress P | ositive Response Message Indication Bit (SPRMIB) |     |                                 |  |  |

| Positiv | Positive Response   |                                                          |     |                                           |  |  |
|---------|---------------------|----------------------------------------------------------|-----|-------------------------------------------|--|--|
| Byte    | Name                |                                                          | Cvt | Wert                                      |  |  |
| 1       | SID-PR              |                                                          | M   | \$59                                      |  |  |
| 2       | Subfun              | iction*                                                  | М   | \$02: Report DTC by status mask           |  |  |
| 3       | DTCSta              | itus Availa bility Mask                                  | М   |                                           |  |  |
|         | Bit                 | Bedeutung                                                |     |                                           |  |  |
|         | 0                   | Test failed                                              |     |                                           |  |  |
|         | 1                   | Reserviert                                               | 7   |                                           |  |  |
|         | 2                   | Reserviert                                               | 7   |                                           |  |  |
|         | 3                   | Confirmed DTC                                            | 7   |                                           |  |  |
|         | 4                   | Test not completed since last clear                      |     |                                           |  |  |
|         | 5                   | Test failed since last clear                             |     |                                           |  |  |
|         | 6                   | Test not completed this monitoring cycle                 |     |                                           |  |  |
|         | 7                   | Reserviert                                               |     |                                           |  |  |
| 4 n     | (DTC, StatusOfDTC)* |                                                          | M   | * Anzahl der Wiederholungen: 1 Anzahl DTC |  |  |
|         | Byte                | Bedeutung                                                |     |                                           |  |  |
|         | 1-3                 | DTC  ▶ Diagnostic Trouble Codes (DTC)                    |     |                                           |  |  |
|         | 4                   | StatusOfDTC<br>(Bitbelegung siehe <u>DTCStatusMask</u> ) |     |                                           |  |  |

| Negati | Negative Response              |                                            |     |                                  |  |  |  |
|--------|--------------------------------|--------------------------------------------|-----|----------------------------------|--|--|--|
| Byte   | Name                           |                                            | Cvt | Wert                             |  |  |  |
| 1      | SID-NR                         |                                            | M   | \$7F                             |  |  |  |
| 2      | SIDRQ-NR                       |                                            | M   | \$19                             |  |  |  |
| 3      | Respor                         | nse Code                                   | M   | ▶ <u>Negative Response Codes</u> |  |  |  |
|        | Wert Bedeutung                 |                                            |     |                                  |  |  |  |
|        | 0x12 Subfunction not supported |                                            |     |                                  |  |  |  |
|        | 0x13                           | Incorrect message length or invalid format |     |                                  |  |  |  |
|        | 0x31                           | Request out of range                       |     |                                  |  |  |  |

## 8.2 Protokollservices

-----

### Report DTC snapshot record by DTC number

| Reque                                                                | Request      |     |                                                |  |  |
|----------------------------------------------------------------------|--------------|-----|------------------------------------------------|--|--|
| Byte                                                                 | Name         | Cvt | Wert                                           |  |  |
| 1                                                                    | SID-RQ       | M   | \$19                                           |  |  |
| 2                                                                    | Subfunction* | M   | \$04: Report DTC snapshot record by DTC number |  |  |
| 3 - 5                                                                | DTC          | M   | ▶ <u>Diagnostic Trouble Codes (DTC)</u>        |  |  |
| 6 SnapshotRecordNumber M (Default)                                   |              |     |                                                |  |  |
| * Bit 7 = Suppress Positive Response Message Indication Bit (SPRMIB) |              |     |                                                |  |  |

| Positiv | Positive Response |                                          |     |                                                |  |
|---------|-------------------|------------------------------------------|-----|------------------------------------------------|--|
| Byte    | Name              |                                          | Cvt | Wert                                           |  |
| 1       | SID-PR            |                                          | M   | \$59                                           |  |
| 2       | Subfur            | iction                                   | М   | \$04: Report DTC snapshot record by DTC number |  |
| 3 - 5   | DTC               |                                          | M   | ▶ <u>Diagnostic Trouble Codes (DTC)</u>        |  |
| 6       | Status            | OfDTC                                    | M   |                                                |  |
|         | Bit               | Bedeutung                                |     |                                                |  |
|         | 0                 | Test failed                              |     |                                                |  |
|         | 1                 | Reserviert                               |     |                                                |  |
|         | 2                 | Reserviert                               |     |                                                |  |
|         | 3                 | Confirmed DTC                            |     |                                                |  |
|         | 4                 | Test not completed since last clear      |     |                                                |  |
|         | 5                 | Test failed since last clear             |     |                                                |  |
|         | 6                 | Test not completed this monitoring cycle |     |                                                |  |
|         | 7                 | Reserviert                               |     |                                                |  |
| 7 n     | (Snaps            | hotRecordAndNumber)*                     | М   | * Anzahl der Wiederholungen: 1 Anzahl Records  |  |
|         | Byte              | Bedeutung                                |     |                                                |  |
|         | 1                 | Record number                            |     |                                                |  |
|         | 2                 | Number of Identifiers                    |     |                                                |  |
|         | 3 - 4             | Identifier                               |     |                                                |  |
|         | 5 - 37            | csEntry                                  |     |                                                |  |

| Negati | Negative Response |                                            |     |                                  |  |  |  |
|--------|-------------------|--------------------------------------------|-----|----------------------------------|--|--|--|
| Byte   | Name              |                                            | Cvt | Wert                             |  |  |  |
| 1      | SID-NR            |                                            | М   | \$7F                             |  |  |  |
| 2      | SIDRQ-NR          |                                            | M   | \$19                             |  |  |  |
| 3      | Respor            | se Code                                    | М   | ▶ <u>Negative Response Codes</u> |  |  |  |
|        | Wert              | Wert Bedeutung                             |     |                                  |  |  |  |
|        | 0x12              | Subfunction not supported                  |     |                                  |  |  |  |
|        | 0x13              | Incorrect message length or invalid format |     |                                  |  |  |  |
|        | 0x31              | Request out of range                       |     |                                  |  |  |  |

## 8.2 Protokollservices

-----

### **Report supported DTC**

| Reque       | Request                                                              |     |      |  |  |  |
|-------------|----------------------------------------------------------------------|-----|------|--|--|--|
| Byte        | Name                                                                 | Cvt | Wert |  |  |  |
| 1           | SID-RQ                                                               | M   | \$19 |  |  |  |
| 2           | 2 Subfunction* M \$0A: Report supported DTC                          |     |      |  |  |  |
| * Bit 7 = 5 | * Bit 7 = Suppress Positive Response Message Indication Bit (SPRMIB) |     |      |  |  |  |

| Positiv | Positive Response   |                                          |     |                                           |  |  |
|---------|---------------------|------------------------------------------|-----|-------------------------------------------|--|--|
| Byte    | Name                |                                          | Cvt | Wert                                      |  |  |
| 1       | SID-PR              |                                          | M   | \$59                                      |  |  |
| 2       | Subfun              | nction                                   | M   | \$0A: Report supported DTC                |  |  |
| 3       | DTCSta              | ntus Availa bility Mask                  | M   |                                           |  |  |
|         | Bit                 | Bedeutung                                |     |                                           |  |  |
|         | 0                   | Test failed                              |     |                                           |  |  |
|         | 1                   | Reserviert                               |     |                                           |  |  |
|         | 2                   | Reserviert                               |     |                                           |  |  |
|         | 3                   | Confirmed DTC                            |     |                                           |  |  |
|         | 4                   | Test not completed since last clear      |     |                                           |  |  |
|         | 5                   | Test failed since last clear             |     |                                           |  |  |
|         | 6                   | Test not completed this monitoring cycle |     |                                           |  |  |
|         | 7                   | Reserviert                               |     |                                           |  |  |
| 4 n     | (DTC, StatusOfDTC)* |                                          | M   | * Anzahl der Wiederholungen: 1 Anzahl DTC |  |  |
|         | Byte                | Bedeutung                                |     |                                           |  |  |
|         | 1-3                 | DTC  → Diagnostic Trouble Codes (DTC)    |     |                                           |  |  |
|         | 4                   | StatusOfDTC                              |     |                                           |  |  |

| Negati | Negative Response |                                            |     |                                  |  |  |  |
|--------|-------------------|--------------------------------------------|-----|----------------------------------|--|--|--|
| Byte   | Name              |                                            | Cvt | Wert                             |  |  |  |
| 1      | SID-NR            |                                            | M   | \$7F                             |  |  |  |
| 2      | SIDRQ-NR          |                                            | M   | \$19                             |  |  |  |
| 3      | Respor            | oonse Code                                 |     | ▶ <u>Negative Response Codes</u> |  |  |  |
|        | Wert              | Bedeutung                                  |     |                                  |  |  |  |
|        | 0x12              | Subfunction not supported                  |     |                                  |  |  |  |
|        | 0x13              | Incorrect message length or invalid format |     |                                  |  |  |  |
|        | 0x31              | Request out of range                       |     |                                  |  |  |  |

### 8.2 Protokollservices

------

### 8.2.6 \$22: Read Data By Identifier

Mit diesem Service lassen sich Daten des MOBILE abfragen. In einer Anfrage dürfen mehrere verschiedene Identifier kombiniert werden, als Antwort werden diese Identifier mit den jeweils zugehörigen Daten gesendet.

| Reque | Request                |     |                                                                                                                                                                                                                                                                                                        |  |  |  |
|-------|------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Byte  | Name                   | Cvt | Wert                                                                                                                                                                                                                                                                                                   |  |  |  |
| 1     | SID-RQ                 | M   | \$22                                                                                                                                                                                                                                                                                                   |  |  |  |
| 2     | Identifier (High-Byte) | M   | \$F1F8: SAG Dataset Version                                                                                                                                                                                                                                                                            |  |  |  |
| 3     | Identifier (Low-Byte)  | M   | \$F1F7: SAG Device Hardware Version \$F1F6: SAG Device Serial Number \$F1F5: SAG Device Product Type \$F15B: Read Fingerprint \$F1F4: SAG Application Data Size \$F1F0: SAG Firmware Name \$F1F1: SAG Bootloader Name \$F1F2: SAG Dataset Name \$F1F3: SAG Dataset Size \$F190: Vehicle Identification |  |  |  |

| Positive Response |                                              |     |                                                                                                                                                                                                                                                                                            |  |  |
|-------------------|----------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Byte              | Name                                         | Cvt | Wert                                                                                                                                                                                                                                                                                       |  |  |
| 1                 | SID-PR                                       | M   | \$62                                                                                                                                                                                                                                                                                       |  |  |
| 2                 | Identifier (High-Byte) Identifier (Low-Byte) | M   | \$F1F8: SAG Dataset Version<br>\$F1F7: SAG Device Hardware Version                                                                                                                                                                                                                         |  |  |
| 3                 | identifier (EOW Byte)                        | M   | \$F1F6: SAG Device Serial Number<br>\$F1F5: SAG Device Product Type<br>\$F15B: Read Fingerprint<br>\$F1F4: SAG Application Data Size<br>\$F1F0: SAG Firmware Name<br>\$F1F1: SAG Bootloader Name<br>\$F1F2: SAG Dataset Name<br>\$F1F3: SAG Dataset Size<br>\$F190: Vehicle Identification |  |  |
| 4 -n              | DataRecord                                   | M   |                                                                                                                                                                                                                                                                                            |  |  |

| Negati | Negative Response                                     |                        |     |                                  |  |  |
|--------|-------------------------------------------------------|------------------------|-----|----------------------------------|--|--|
| Byte   | Name                                                  |                        | Cvt | Wert                             |  |  |
| 1      | SID-NR                                                |                        | М   | \$7F                             |  |  |
| 2      | SIDRQ-NR                                              |                        | M   | \$22                             |  |  |
| 3      | Respor                                                | se Code                | M   | ▶ <u>Negative Response Codes</u> |  |  |
|        | Wert                                                  | Bedeutung              |     |                                  |  |  |
|        | 0x13 Incorrect message length or invalid format       |                        |     |                                  |  |  |
|        | 0x22                                                  | Conditions not correct |     |                                  |  |  |
|        | 0x31 Request out of range 0x33 Security access denied |                        |     |                                  |  |  |
|        |                                                       |                        |     |                                  |  |  |

### Beispiel: SAG Bootloader Name auslesen

|                   | Byte 1 | Byte 2 | Byte 3 | Byte 4 - 18                         |
|-------------------|--------|--------|--------|-------------------------------------|
| Request           | 0x22   | 0xF1   | 0xF1   | -                                   |
| Positive Response | 0x62   | 0xF1   | 0xF1   | SAG Bootloader Name (11 15 Zeichen) |

#### 8.2 Protokollservices

\_\_\_\_\_

#### 8.2.7 \$27: Security Access

Mit diesem Service lassen sich sicherheitskritische Dienste im MOBILE freischalten. Der Security Access basiert auf einem "Seed & Key"-Verfahren:

- 1. Der Tester fordert mit der Subfunktion "Request seed" vom MOBILE eine Zufallszahl an.
- 2. Der Tester berechnet durch einen geheimen Algorithmus aus der Zufallszahl einen Schlüssel, den er mit der Subfunktion "Send key" zum MOBILE zurücksendet.
- 3. Der MOBILE berechnet in gleicher Weise aus der Zufallszahl den Schlüssel und vergleicht diesen mit dem vom Tester empfangenen Schlüssel.
- 4. Sind beide Schlüssel identisch, gibt der MOBILE die entsprechenden Dienste frei und bestätigt dies durch eine positive Response.

#### Übersicht sicherheitskritische Dienste

| Service/Dienst                   | Request (Präfix) | ● = Dienst im Zustand möglich (Zustand nach Ausführung) |             |  |
|----------------------------------|------------------|---------------------------------------------------------|-------------|--|
|                                  |                  | Locked                                                  | Unlocked L1 |  |
| \$10: Diagnostic Session Control |                  |                                                         |             |  |
| - Default Session                | 10 01            | •                                                       | ● (Locked)  |  |
| - Programming Session            | 10 02            | •                                                       | • (Locked)  |  |
| - Extended Diagnostic Session    | 10 03            | •                                                       | ● (Locked)  |  |
| \$11: ECU Reset                  |                  |                                                         |             |  |
| - Hard Reset                     | 11 01            | •                                                       | • (Locked)  |  |
| \$27: Security Access            |                  |                                                         |             |  |
| - Send key                       | 27 12 xx         | • (Unlocked L1)                                         | -           |  |

## 8.2 Protokollservices

------

### **Request seed**

| Request                                                              |                                     |     |      |  |  |
|----------------------------------------------------------------------|-------------------------------------|-----|------|--|--|
| Byte                                                                 | Name                                | Cvt | Wert |  |  |
| 1                                                                    | SID-RQ                              | M   | \$27 |  |  |
| 2                                                                    | 2 Subfunction* M \$11: Request seed |     |      |  |  |
| * Bit 7 = Suppress Positive Response Message Indication Bit (SPRMIB) |                                     |     |      |  |  |

| Positive Response |               |   |                    |  |  |
|-------------------|---------------|---|--------------------|--|--|
| Byte              | Byte Name Cvt |   | Wert               |  |  |
| 1                 | SID-PR        | M | \$67               |  |  |
| 2                 | Subfunction   | M | \$11: Request seed |  |  |
| 3 - n             | SecuritySeed  | М |                    |  |  |

| Negati           | Negative Response                                                   |                                        |      |                                  |  |  |
|------------------|---------------------------------------------------------------------|----------------------------------------|------|----------------------------------|--|--|
| Byte             | Name                                                                |                                        | Cvt  | Wert                             |  |  |
| 1                | SID-NR                                                              |                                        | M    | \$7F                             |  |  |
| 2                | SIDRQ-                                                              | NR                                     | M    | \$27                             |  |  |
| 3                | Respor                                                              | ise Code                               | M    | ▶ <u>Negative Response Codes</u> |  |  |
|                  | Wert                                                                | Bedeutung                              |      |                                  |  |  |
|                  | 0x12                                                                | Subfunction not supported              |      |                                  |  |  |
|                  | 0x13                                                                | Incorrect message length or invalid fo | rmat |                                  |  |  |
|                  | 0x22                                                                | Conditions not correct                 |      |                                  |  |  |
|                  | 0x24                                                                | Request sequence error                 |      |                                  |  |  |
|                  | 0x31                                                                | Request out of range                   |      |                                  |  |  |
| 0x35 Invalid key |                                                                     |                                        |      |                                  |  |  |
|                  | 0x36 Exceed number of attempts 0x37 Required time delay not expired |                                        |      |                                  |  |  |
|                  |                                                                     |                                        |      |                                  |  |  |

## 8.2 Protokollservices

-----

### Send key

| Reque       | Request                                                              |     |                |  |  |  |
|-------------|----------------------------------------------------------------------|-----|----------------|--|--|--|
| Byte        | Name                                                                 | Cvt | Wert           |  |  |  |
| 1           | SID-RQ                                                               | M   | \$27           |  |  |  |
| 2           | 2 Subfunction*                                                       |     | \$12: Send key |  |  |  |
| 3 - n       | 3 - n SecurityKey M                                                  |     |                |  |  |  |
| * Bit 7 = 5 | * Bit 7 = Suppress Positive Response Message Indication Bit (SPRMIB) |     |                |  |  |  |

| Positiv | Positive Response |   |                |  |  |  |
|---------|-------------------|---|----------------|--|--|--|
| Byte    | e Name Cvt Wert   |   |                |  |  |  |
| 1       | SID-PR            | М | \$67           |  |  |  |
| 2       | Subfunction       | М | \$12: Send key |  |  |  |

| Negati | Negative Response              |                                                 |                                 |                                  |  |  |
|--------|--------------------------------|-------------------------------------------------|---------------------------------|----------------------------------|--|--|
| Byte   | Name                           | Name                                            |                                 | Wert                             |  |  |
| 1      | SID-NR                         |                                                 | M                               | \$7F                             |  |  |
| 2      | SIDRQ-                         | NR                                              | M                               | \$27                             |  |  |
| 3      | Respor                         | ise Code                                        | M                               | ▶ <u>Negative Response Codes</u> |  |  |
|        | Wert                           | Bedeutung                                       |                                 |                                  |  |  |
|        | 0x12 Subfunction not supported |                                                 |                                 |                                  |  |  |
|        | 0x13                           | 0x13 Incorrect message length or invalid format |                                 |                                  |  |  |
|        | 0x22                           | Conditions not correct                          |                                 |                                  |  |  |
|        | 0x24                           | Request sequence error                          |                                 |                                  |  |  |
|        | 0x31                           | 0x31 Request out of range 0x35 Invalid key      |                                 |                                  |  |  |
|        | 0x35                           |                                                 |                                 |                                  |  |  |
|        | 0x36                           | Exceed number of attempts                       |                                 |                                  |  |  |
|        | 0x37                           | Required time delay not expired                 | Required time delay not expired |                                  |  |  |

### 8.2 Protokollservices

------

### 8.2.8 \$28: Communication Control

Mit diesem Service lässt sich die Übertragung der Tx-PDOs deaktivieren.

| Reque     | Request                                                    |     |                                                   |  |  |  |
|-----------|------------------------------------------------------------|-----|---------------------------------------------------|--|--|--|
| Byte      | Name                                                       | Cvt | Wert                                              |  |  |  |
| 1         | SID-RQ                                                     | M   | \$28                                              |  |  |  |
| 2         | Subfunction*                                               | M   | \$00: enableRxAndTx<br>\$01: enableRxAndDisableTx |  |  |  |
| 3         | 3 CommunicationType M                                      |     |                                                   |  |  |  |
| * Bit 7 = | Suppress Positive Response Message Indication Bit (SPRMIB) |     |                                                   |  |  |  |

| Positiv | Positive Response |     |                                                   |  |  |
|---------|-------------------|-----|---------------------------------------------------|--|--|
| Byte    | Name              | Cvt | Wert                                              |  |  |
| 1       | SID-PR            | M   | \$68                                              |  |  |
| 2       | Subfunction       | M   | \$00: enableRxAndTx<br>\$01: enableRxAndDisableTx |  |  |

| Negati | Negative Response                                     |                                        |      |                                  |  |  |
|--------|-------------------------------------------------------|----------------------------------------|------|----------------------------------|--|--|
| Byte   | Name                                                  |                                        | Cvt  | Wert                             |  |  |
| 1      | SID-NR                                                |                                        | M    | \$7F                             |  |  |
| 2      | SIDRQ-                                                | NR                                     | М    | \$28                             |  |  |
| 3      | Respor                                                | ise Code                               | M    | ▶ <u>Negative Response Codes</u> |  |  |
|        | Wert                                                  | Bedeutung                              |      |                                  |  |  |
|        | 0x12                                                  | Subfunction not supported              |      |                                  |  |  |
|        | 0x13                                                  | Incorrect message length or invalid fo | rmat |                                  |  |  |
|        | 0x22 Conditions not correct 0x31 Request out of range |                                        |      |                                  |  |  |
|        |                                                       |                                        |      |                                  |  |  |
|        | 0x33                                                  | Security access denied                 |      |                                  |  |  |

### 8.2 Protokollservices

------

### 8.2.9 \$31: Routine Control

Mit diesem Service und der unterstützen Subfunktion "Start routine" lassen sich verschiedene Dienste im MOBILE starten.

| Reque     | Request                                                |       |                                                                                                                                              |  |  |  |
|-----------|--------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Byte      | Name                                                   | Cvt   | Wert                                                                                                                                         |  |  |  |
| 1         | SID-RQ                                                 | M     | \$31                                                                                                                                         |  |  |  |
| 2         | Subfunction*                                           | M     | \$01: Start routine                                                                                                                          |  |  |  |
| 3         | Identifier (High-Byte)                                 | M     | \$F200: Fault Reset                                                                                                                          |  |  |  |
| 4         | Identifier (Low-Byte)                                  | M     | \$F100: EnablePrivateCAN \$FE02: Restore Parameter Set \$FE01: Store Parameter Set \$F000: EnableTMO \$0203: Check Programming Preconditions |  |  |  |
| 5 - n     | RoutineControlOptionRecord                             | -     |                                                                                                                                              |  |  |  |
| * Bit 7 = | Suppress Positive Response Message Indication Bit (SPR | RMIB) |                                                                                                                                              |  |  |  |

| Positiv | Positive Response      |     |                                                                                                                                                          |  |  |  |
|---------|------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Byte    | Name                   | Cvt | Wert                                                                                                                                                     |  |  |  |
| 1       | SID-PR                 | M   | \$71                                                                                                                                                     |  |  |  |
| 2       | Subfunction            | M   | \$01: Start routine                                                                                                                                      |  |  |  |
| 3       | Identifier (High-Byte) | M   | \$F200: Fault Reset                                                                                                                                      |  |  |  |
| 4       | Identifier (Low-Byte)  | M   | \$F100: EnablePrivateCAN<br>\$FE02: Restore Parameter Set<br>\$FE01: Store Parameter Set<br>\$F000: EnableTMO<br>\$0203: Check Programming Preconditions |  |  |  |
| 5 - n   | RoutineStatusRecord    | -   |                                                                                                                                                          |  |  |  |

| Negati                                                                                 | Negative Response |                                        |      |                                  |  |  |
|----------------------------------------------------------------------------------------|-------------------|----------------------------------------|------|----------------------------------|--|--|
| Byte                                                                                   | Name              |                                        | Cvt  | Wert                             |  |  |
| 1                                                                                      | SID-NR            |                                        | М    | \$7F                             |  |  |
| 2                                                                                      | SIDRQ-            | NR                                     | M    | \$31                             |  |  |
| 3                                                                                      | Respor            | ise Code                               | M    | ▶ <u>Negative Response Codes</u> |  |  |
|                                                                                        | Wert              | Bedeutung                              |      |                                  |  |  |
|                                                                                        | 0x12              | Subfunction not supported              |      |                                  |  |  |
|                                                                                        | 0x13              | Incorrect message length or invalid fo | rmat |                                  |  |  |
|                                                                                        | 0x22              | Conditions not correct                 |      |                                  |  |  |
|                                                                                        | 0x24              | Request sequence error                 |      |                                  |  |  |
| 0x31 Request out of range 0x33 Security access denied 0x72 General programming failure |                   |                                        |      |                                  |  |  |
|                                                                                        |                   |                                        |      |                                  |  |  |
|                                                                                        |                   |                                        |      |                                  |  |  |

### 8.2 Protokollservices

------

### 8.2.10 \$34: Request Download

Mit diesem Service lässt sich die Übertragung von Daten des Testsystems zum MOBILE einleiten. Die eigentliche Datenübertragung erfolgt anschließend mit dem Service "Transfer Data".

| Reque | Request                              |        |      |  |  |  |
|-------|--------------------------------------|--------|------|--|--|--|
| Byte  | Name                                 | Cvt    | Wert |  |  |  |
| 1     | SID-RQ                               | M      | \$34 |  |  |  |
| 2     | DataFormatIdentifier                 | М      |      |  |  |  |
| 3     | Address and Length Format Identifier | M (fd) |      |  |  |  |
| 4 - n | Address and Size                     | M (fd) |      |  |  |  |

| Positiv | Positive Response      |     |      |  |  |  |
|---------|------------------------|-----|------|--|--|--|
| Byte    | Name                   | Cvt | Wert |  |  |  |
| 1       | SID-PR                 | М   | \$74 |  |  |  |
| 2       | LengthFormatIdentifier | М   |      |  |  |  |
| 3 - n   | MaxNumberOfBlockLength | М   |      |  |  |  |

| Negati | Negative Response           |                                        |      |                                  |  |  |  |  |
|--------|-----------------------------|----------------------------------------|------|----------------------------------|--|--|--|--|
| Byte   | Name                        |                                        | Cvt  | Wert                             |  |  |  |  |
| 1      | SID-NR                      |                                        | М    | \$7F                             |  |  |  |  |
| 2      | SIDRQ-                      | NR                                     | M    | \$34                             |  |  |  |  |
| 3      | Respor                      | se Code                                | M    | ▶ <u>Negative Response Codes</u> |  |  |  |  |
|        | Wert                        | Bedeutung                              |      |                                  |  |  |  |  |
|        | 0x13                        | Incorrect message length or invalid fo | rmat |                                  |  |  |  |  |
|        | 0x22                        | Conditions not correct                 |      |                                  |  |  |  |  |
|        | 0x31 Request out of range   |                                        |      |                                  |  |  |  |  |
|        | 0x33 Security access denied |                                        |      |                                  |  |  |  |  |
|        | 0x70                        | Upload / Download not accepted         |      |                                  |  |  |  |  |

### 8.2 Protokollservices

------

### 8.2.11 \$35: Request Upload

Mit diesem Service lässt sich die Übertragung von Daten des MOBILE zum Testsystem einleiten. Die eigentliche Datenübertragung erfolgt anschließend mit dem Service "Transfer Data".

| Reque | Request                              |        |      |  |  |  |
|-------|--------------------------------------|--------|------|--|--|--|
| Byte  | Name                                 | Cvt    | Wert |  |  |  |
| 1     | SID-RQ                               | M      | \$35 |  |  |  |
| 2     | DataFormatIdentifier                 | М      |      |  |  |  |
| 3     | Address and Length Format Identifier | M (fd) |      |  |  |  |
| 4 - n | Memory Address and Size              | M (fd) |      |  |  |  |

| Positive Response |                        |     |      |  |  |
|-------------------|------------------------|-----|------|--|--|
| Byte              | Name                   | Cvt | Wert |  |  |
| 1                 | SID-PR                 | М   | \$75 |  |  |
| 2                 | Formatidentifier       | M   |      |  |  |
| 3 - n             | MaxNumberOfBlockLength | М   |      |  |  |

| Negati | Negative Response           |                                        |      |                                  |  |  |  |
|--------|-----------------------------|----------------------------------------|------|----------------------------------|--|--|--|
| Byte   | Name                        |                                        | Cvt  | Wert                             |  |  |  |
| 1      | SID-NR                      |                                        | M    | \$7F                             |  |  |  |
| 2      | SIDRQ-                      | NR                                     | M    | \$35                             |  |  |  |
| 3      | Respor                      | se Code                                | M    | ▶ <u>Negative Response Codes</u> |  |  |  |
|        | Wert Bedeutung              |                                        |      |                                  |  |  |  |
|        | 0x13                        | Incorrect message length or invalid fo | rmat |                                  |  |  |  |
|        | 0x22                        | Conditions not correct                 |      |                                  |  |  |  |
|        | 0x31 Request out of range   |                                        |      |                                  |  |  |  |
|        | 0x33 Security access denied |                                        |      |                                  |  |  |  |
|        | 0x70                        | Upload / Download not accepted         |      |                                  |  |  |  |

### 8.2 Protokollservices

\_\_\_\_\_\_

#### 8.2.12 \$36: Transfer Data

Mit diesem Service lassen sich Daten zwischen Testsystem und MOBILE übertragen. Zur Festlegung der Übertragungsrichtung und Datengröße muss zuvor der Service "Request Download" oder "Request Upload" ausgeführt worden sein.

| Reques | Request |     |      |  |  |  |
|--------|---------|-----|------|--|--|--|
| Byte   | Name    | Cvt | Wert |  |  |  |
| 1      | SID-RQ  | М   | \$36 |  |  |  |
| 2 - n  | Data    | М   |      |  |  |  |

| Positiv | Positive Response |     |      |  |  |  |
|---------|-------------------|-----|------|--|--|--|
| Byte    | Name              | Cvt | Wert |  |  |  |
| 1       | SID-PR            | М   | \$76 |  |  |  |
| 2 - n   | Data              | M   |      |  |  |  |

| Negat                                      | Negative Response |                                            |     |                                  |  |  |  |
|--------------------------------------------|-------------------|--------------------------------------------|-----|----------------------------------|--|--|--|
| Byte                                       | Name              |                                            | Cvt | Wert                             |  |  |  |
| 1                                          | SID-NR            |                                            | M   | \$7F                             |  |  |  |
| 2                                          | SIDRQ-            | NR                                         | M   | \$36                             |  |  |  |
| 3                                          | Respor            | nse Code                                   | M   | ▶ <u>Negative Response Codes</u> |  |  |  |
|                                            | Wert              | Bedeutung                                  |     |                                  |  |  |  |
|                                            | 0x13              | Incorrect message length or invalid format |     |                                  |  |  |  |
|                                            | 0x22              | Conditions not correct                     |     |                                  |  |  |  |
|                                            | 0x24              | Request sequence error                     |     |                                  |  |  |  |
|                                            | 0x31              | Request out of range                       |     |                                  |  |  |  |
|                                            | 0x71              | Transfer data suspended                    |     |                                  |  |  |  |
|                                            | 0x72              | General programming failure                |     |                                  |  |  |  |
|                                            | 0x73              | Wrong block sequence counter               |     |                                  |  |  |  |
| 0x92 Voltage too high 0x93 Voltage too low |                   |                                            |     |                                  |  |  |  |
|                                            |                   |                                            |     |                                  |  |  |  |

### 8.2 Protokollservices

------

## 8.2.13 \$37: Request Transfer Exit

Eine zuvor gestartete Datenübertragung muss immer mit diesem Service beendet werden.

| Request |                  |     |      |  |  |  |
|---------|------------------|-----|------|--|--|--|
| Byte    | Name             | Cvt | Wert |  |  |  |
| 1       | SID-RQ           | M   | \$37 |  |  |  |
| 2 - n   | RequestParameter | -   |      |  |  |  |

| Positiv | Positive Response |     |      |  |  |  |
|---------|-------------------|-----|------|--|--|--|
| Byte    | Name              | Cvt | Wert |  |  |  |
| 1       | SID-PR            | М   | \$77 |  |  |  |
| 2 - n   | ResponseParameter | -   |      |  |  |  |

| Negati | Negative Response                               |                        |     |                                  |  |  |  |  |
|--------|-------------------------------------------------|------------------------|-----|----------------------------------|--|--|--|--|
| Byte   | Name                                            |                        | Cvt | Wert                             |  |  |  |  |
| 1      | SID-NR                                          |                        | M   | \$7F                             |  |  |  |  |
| 2      | SIDRQ-NR                                        |                        | M   | \$37                             |  |  |  |  |
| 3      | Response Code                                   |                        |     | ▶ <u>Negative Response Codes</u> |  |  |  |  |
|        | Wert Bedeutung                                  |                        |     |                                  |  |  |  |  |
|        | 0x13 Incorrect message length or invalid format |                        |     |                                  |  |  |  |  |
|        | 0x22 Conditions not correct                     |                        |     |                                  |  |  |  |  |
|        | 0x24                                            | Request sequence error |     |                                  |  |  |  |  |

## 8.2 Protokollservices

\_\_\_\_\_

#### 8.2.14 \$3E: Tester Present

Findet längere Zeit keine Kommunikation mit dem Testsystem statt, wechselt der MOBILE automatisch wieder zur "Default Session". Mit diesem Service kann das Testsystem dem MOBILE signalisieren, dass es immer noch anwesend ist und die aktuelle Session nicht verlassen werden soll.

| Reques      | Request                                                              |      |      |  |  |  |
|-------------|----------------------------------------------------------------------|------|------|--|--|--|
| Byte        | Name                                                                 | Wert |      |  |  |  |
| 1           | SID-RQ                                                               | M    | \$3E |  |  |  |
| 2           | Subfunction* M \$00: keine Subfunktion                               |      |      |  |  |  |
| * Bit 7 = 9 | * Bit 7 = Suppress Positive Response Message Indication Bit (SPRMIB) |      |      |  |  |  |

| Positive Response |                  |   |                         |  |
|-------------------|------------------|---|-------------------------|--|
| Byte              | te Name Cvt Wert |   |                         |  |
| 1                 | SID-PR           | M | \$7E                    |  |
| 2                 | Subfunction      | M | \$00: keine Subfunktion |  |

| Negative Response |          |                                            |     |                                  |  |
|-------------------|----------|--------------------------------------------|-----|----------------------------------|--|
| Byte              | Name     |                                            | Cvt | Wert                             |  |
| 1                 | SID-NR   |                                            | M   | \$7F                             |  |
| 2                 | SIDRQ-NR |                                            | M   | \$3E                             |  |
| 3                 | Respor   | oonse Code                                 |     | ▶ <u>Negative Response Codes</u> |  |
|                   | Wert     | Wert Bedeutung                             |     |                                  |  |
|                   | 0x12     | Subfunction not supported                  |     |                                  |  |
|                   | 0x13     | Incorrect message length or invalid format |     |                                  |  |

### 8.2 Protokollservices

------

## 8.2.15 \$85: Control DTC Setting

Mit diesem Service lässt sich die Erkennung einzelner oder aller Fehler auf einmal ab- und wieder anschalten.

| Request                                                              |        |     |                       |  |
|----------------------------------------------------------------------|--------|-----|-----------------------|--|
| Byte                                                                 | Name   | Cvt | Wert                  |  |
| 1                                                                    | SID-RQ | M   | \$85                  |  |
| 2 Subfunction*                                                       |        | M   | \$01: On<br>\$02: Off |  |
| 3 - n DTCSettingControlOptionRecord U                                |        |     |                       |  |
| * Bit 7 = Suppress Positive Response Message Indication Bit (SPRMIB) |        |     |                       |  |

| Positive Response |             |     |                       |
|-------------------|-------------|-----|-----------------------|
| Byte              | Name        | Cvt | Wert                  |
| 1                 | SID-PR      | M   | \$C5                  |
| 2                 | Subfunction | М   | \$01: On<br>\$02: Off |

| Negative Response |                                                                                                       |        |     |                                  |
|-------------------|-------------------------------------------------------------------------------------------------------|--------|-----|----------------------------------|
| Byte              | Name                                                                                                  |        | Cvt | Wert                             |
| 1                 | SID-NR                                                                                                | SID-NR |     | \$7F                             |
| 2                 | SIDRQ-                                                                                                | NR     | M   | \$85                             |
| 3                 | Response Code                                                                                         |        | M   | ▶ <u>Negative Response Codes</u> |
|                   | Wert Bedeutung                                                                                        |        |     |                                  |
|                   | 0x12 Subfunction not supported                                                                        |        |     |                                  |
|                   | 0x13 Incorrect message length or invalid format 0x22 Conditions not correct 0x31 Request out of range |        |     |                                  |
|                   |                                                                                                       |        |     |                                  |
|                   |                                                                                                       |        |     |                                  |

## 8.3 Negative Response Codes

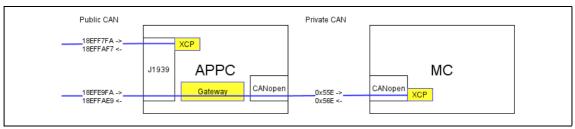
\_\_\_\_\_

### 8.3 Negative Response Codes

Wenn eine empfangene Anforderung vom Steuergerät nicht bearbeitet werden kann, dann antwortet das Steuergerät mit einem der folgenden Negative Response Codes (je nach Art des Fehlers). Spezifische Negative Response Codes sind beim jeweiligen Protokollservice beschrieben.

Unterstützte Negative Response Codes:

| Negative Response Code |                                               |  |  |  |
|------------------------|-----------------------------------------------|--|--|--|
| 0x10                   | General reject                                |  |  |  |
| 0x11                   | Service not supported                         |  |  |  |
| 0x12                   | Subfunction not supported                     |  |  |  |
| 0x13                   | Incorrect message length or invalid format    |  |  |  |
| 0x14                   | Response too long                             |  |  |  |
| 0x21                   | Busy repeat request                           |  |  |  |
| 0x22                   | Conditions not correct                        |  |  |  |
| 0x24                   | Request sequence error                        |  |  |  |
| 0x31                   | Request out of range                          |  |  |  |
| 0x33                   | Security access denied                        |  |  |  |
| 0x35                   | Invalid key                                   |  |  |  |
| 0x36                   | Exceed number of attempts                     |  |  |  |
| 0x37                   | Required time delay not expired               |  |  |  |
| 0x70                   | Upload / Download not accepted                |  |  |  |
| 0x71                   | Transfer data suspended                       |  |  |  |
| 0x72                   | General programming failure                   |  |  |  |
| 0x73                   | Wrong block sequence counter                  |  |  |  |
| 0x78                   | Request correctly received - response pending |  |  |  |
| 0x7E                   | Subfunction not supported in active session   |  |  |  |
| 0x7F                   | Service not supported in active session       |  |  |  |
| 0x81                   | RPM too high                                  |  |  |  |
| 0x82                   | RPM too low                                   |  |  |  |
| 0x83                   | Engine is running                             |  |  |  |
| 0x84                   | Engine is not running                         |  |  |  |
| 0x85                   | Engine runtime too low                        |  |  |  |
| 0x86                   | Temperature too high                          |  |  |  |
| 0x87                   | Temperature too low                           |  |  |  |
| 0x88                   | Vehicle speed too high                        |  |  |  |
| 0x89                   | Vehicle speed too low                         |  |  |  |
| 0x8A                   | Throttle / Pedal too high                     |  |  |  |
| 0x8B                   | Throttle / Pedal too low                      |  |  |  |
| 0x8C                   | Transmission range not in neutral             |  |  |  |
| 0x8D                   | Transmission range not in gear                |  |  |  |
| 0x8F                   | Break switch(es) not closed                   |  |  |  |
| 0x90                   | Shifter lever not in park                     |  |  |  |
| 0x91                   | Torque converter clutch locked                |  |  |  |
| 0x92                   | Voltage too high                              |  |  |  |
| 0x93                   | Voltage too low                               |  |  |  |


#### 9.1 CAN IDs Public CAN

.\_\_\_\_\_

## 9 Universal Measurement and Calibration Protocol (XCP)

Der XCP-Zugriff erfolgt via Public CAN auf den APPC und den MC. APPC und MC sind je ein separates XCP-Device. Beim MC-Zugriff dient der APPC als Gateway. Mittels XCP kann auf alle Objekte im Objektverzeichnis zugegriffen werden. Die A2L-Datei, die alle Signale beinhaltet, liegt jedem Firmware-Paket bei und kann beispielsweise in die Software »Vector CANape« eingebunden werden.

Ein direkter Speicherzugriff mittels XCP ist nicht möglich. Die Lese- und Schreibrestriktionen sind dieselben wie beim CANopen-Protokoll.



[9-1] XCP-Kommunikation

#### 9.1 CAN IDs Public CAN

#### Standard IDs

| Microcontroller | Richtung | Public CAN | Parameter          |
|-----------------|----------|------------|--------------------|
| XCP on APPC     | Command  | 0x18EFF7FA | <u>0x4023:0x10</u> |
|                 | Response | 0x18EFFAF7 | <u>0x4021:0x10</u> |
| XCP on MC       | Command  | 0x18EFE9FA | <u>0x4023:0x11</u> |
|                 | Response | 0x18EFFAE9 | <u>0x4021:0x11</u> |

Die CAN-IDs sind von den XCP-Basisadressen und dem Addressoffet (ID Pins) abhängig. Die genaue Zusammensetzung können Sie den jeweiligen Parameterbeschreibungen (A2L-Dateien) entnehmen.

#### 9.2 Unterstütze XCP-Nachrichtentypen

| Kürzel | PID <sup>1)</sup>       | Name                    | Erklärung                  |
|--------|-------------------------|-------------------------|----------------------------|
| CMD    | 0xC0 0xFF               | Command Packet          | Kommandos versenden        |
| RES    | 0xFF                    | Command Response Packet | Positive Antwort           |
| ERR    | 0xFE                    | Error                   | Negative Antwort           |
| DAQ    | 0x00 0xFB <sup>2)</sup> | Data AcQuisition        | Zyklische Messdaten senden |

<sup>1)</sup> PID = Packet IDentifier

<sup>&</sup>lt;sup>2)</sup> Für das Signaliseren einer Überlaufsituation bei DAQ wird das höchstwertige Bit der PID vom nächsten erfolgreich übermittelten Paket verwendet. Dadurch wird die maximal mögliche ODT-Nummer (= PID bei DAQ) auf 0x7B begrenzt

### 9.3 Unterstütze Kommandos

.\_\_\_\_\_

#### 9.3 Unterstütze Kommandos

Die im Folgenden beschriebenen Kommandos werden ab Firmware R6.4 unterstützt.

### 9.3.1 STANDARD COMMANDS (STD)

| Kommando           | Code |
|--------------------|------|
| CONNECT            | 0xFF |
| DISCONNECT         | 0xFE |
| GET_STATUS         | 0xFD |
| SYNCH              | 0xFC |
| GET_COMM_MODE_INFO | 0xFB |
| GET_ID             | 0xFA |
| GET_SEED           | 0xF8 |
| UNLOCK             | 0xF7 |
| SET_MTA            | 0xF6 |
| UPLOAD             | 0xF5 |
| SHORT_UPLOAD       | 0xF4 |

### 9.3.2 CALIBRATION COMMANDS (CAL)

| Kommando | Code |
|----------|------|
| DOWNLOAD | 0xF0 |

9.3 Unterstütze Kommandos

\_\_\_\_\_

### 9.3.3 DATA ACQUISITION AND STIMULATION COMMANDS (DAQ)

Es wird nur Data Acquisition, nicht aber Data Stimulation unterstützt.

• SET\_DAQ\_LIST\_MODE: Mode, Bit DIRECTION = 0 (DAQ)

#### **Basics**

| Kommando                | Code |
|-------------------------|------|
| SET_DAQ_PTR             | 0xE2 |
| WRITE_DAQ               | 0xE1 |
| SET_DAQ_LIST_MODE       | 0xE0 |
| START_STOP_DAQ_LIST     | 0xDE |
| START_STOP_SYNCH        | 0xDD |
| GET_DAQ_CLOCK           | 0xDC |
| GET_DAQ_PROCESSOR_INFO  | 0xDA |
| GET_DAQ_RESOLUTION_INFO | 0xD9 |
| GET_DAQ_LIST_MODE       | 0xDF |

### **Static configuration**

Wird nicht unterstützt.

#### **Dynamic configuration**

| Kommando        | Code |
|-----------------|------|
| FREE_DAQ        | 0xD6 |
| ALLOC_DAQ       | 0xD5 |
| ALLOC_ODT       | 0xD4 |
| ALLOC_ODT_ENTRY | 0xD3 |

Bei Data Acquisition (DAQ) werden die Messungen zu bestimmten Zeitpunkten durchgeführt und anschließend an den XCP-Master gesendet. Mittels vordefinierten Events kann der Zeitpunkt vor dem Start der Messung ausgewählt werden. Sowohl auf dem APPC wie auch auf dem MC stehen 3 zyklische Events zur Auswahl: 10 ms 100 ms und 1 s.

Die Konsistenz der Daten über eine komplette DAQ kann nicht gewährleistet werden.

9.4 XCP-Schreibzugriff und DAQ-Freischaltung

-----

### 9.4 XCP-Schreibzugriff und DAQ-Freischaltung

Der azyklische Lesezugriff (polling) ist ohne zusätzliche Freischaltung zugänglich.

Die Funktion Kalibrierung (Schreiben von Parametern) und Data Acquisition (Gerät sendet Messwerte zyklisch) ist durch ein Seed&Key-Verfahren geschützt.

Für beide Seed&Key-Verfahren liegt die DLL-Datei dem Firmware-Paket bei und kann beispielsweise in die Software »Vector CANape« eingebunden werden.

## 10 Diagnose & Fehlermanagement

10.1 Trace-Funktion

-----

## 10 Diagnose & Fehlermanagement

Dieses Kapitel enthält Informationen zur Antriebsdiagnose, Fehlerbehandlung und Störungsanalyse

#### **Verwandte Themen:**

**▶** Gerätestatus

#### 10.1 Trace-Funktion

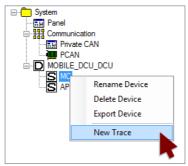
Die Trace-Funktion können Sie zur Unterstützung bei der Inbetriebnahme, Wartung und Fehlersuche einsetzen. Mit der Trace-Funktion lassen sich die aktuellen Werte ausgewählter Objekte des MOBILE zyklisch erfassen und im »MOBILE Engineer« grafisch darstellen.

• Im »MOBILE Starter« ist die Trace-Funktion nicht enthalten.

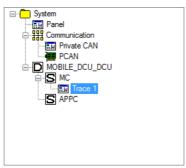
#### Online-/Offline-Trace

Je nach Anwendungsfall können Sie zwischen Online- und Offline-Trace wählen, die Unterschiede sind in der folgenden Tabelle gegenübergestellt:

| Merkmal                | Online-Trace                                                                                                              | Offline-Trace                                                                                                                                                                                                                                                         |
|------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Allgemein              | Die Datenwerte werden kontinuierlich<br>"live" vom MOBILE gelesen und unmittel-<br>bar im »MOBILE Engineer« visualisiert. | Die Datenwerte werden zunächst tem-<br>porär im internen Speicher des MOBILE<br>abgelegt. Erst wenn der Trace komplett<br>erfolgt ist, werden die Datenwerte zum<br>»MOBILE Engineer« übertragen. Hier-<br>durch ist eine wesentlich genauere Erfas-<br>sung möglich. |
| Minimale Abtastrate    | ca. 100 ms                                                                                                                | ca. 50 μs (DCU: 64 μs, PSU: 32 μs)                                                                                                                                                                                                                                    |
| Maximale Zeitdauer     | unbegrenzt                                                                                                                | begrenzt (abhängig vom gewählten Zei-<br>tintervall, der Anzahl der Kanäle und dem<br>im Gerät verfügbaren Speicher)                                                                                                                                                  |
| Maximale Anzahl Kanäle | unbegrenzt                                                                                                                | 8 Kanäle mit jeweils 16 Bit Datenbreite<br>(32-Bit-Werte belegen 2 Kanäle)                                                                                                                                                                                            |
| Triggerbedingungen     | nein                                                                                                                      | ja:  • Bit-Pattern-Vergleich  • Einfacher Vergleich  • Anwenderspezifischer Vergleich                                                                                                                                                                                 |


\_\_\_\_\_

#### 10.1.1 Neuen Trace erstellen




### So erstellen Sie einen neuen Trace:

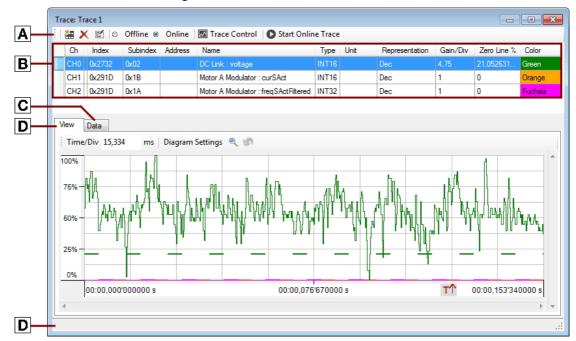
- 1. Im *System Browser* mit der rechten Maustaste auf das Gerät klicken, für das ein neuer Trace erstellt werden soll.
  - Für diese schrittweise Anleitung wurde als Gerät der Motor-Controller (MC) des MOBILE gewählt.
- 2. Im nun angezeigten Kontextmenü zum Gerät den Befehl **New Trace** ausführen:



Daraufhin wird ein neuer Trace mit einem einmaligen Namen im Format "Trace <n>" an das Gerät angehängt:



- 3. Optional: Name des Trace ändern.
  - Führen Sie hierzu im Kontextmenü zum Trace den Befehl Rename Trace aus.


## 10 Diagnose & Fehlermanagement

10.1 Trace-Funktion

\_\_\_\_\_\_

### 10.1.2 Benutzeroberfläche (Trace-Panel)

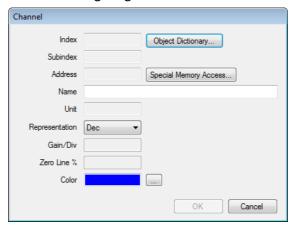
Wenn Sie im *System Browser* auf einen Trace klicken, wird das entsprechende Trace-Panel geöffnet. Das Trace-Panel beinhaltet folgende Steuer- und Funktionselemente:



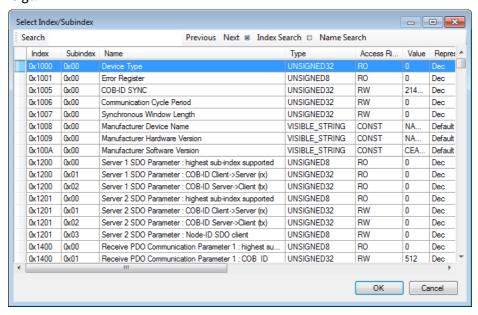
- A Trace-Symbolleiste
- Anzeige der Trace-Daten in tabel- E Statusleiste larischer Form
- **B** Kanalkonfiguration
- Diagrammdarstellung

### **Trace-Symbolleiste**

| Symbol/Befehl       | Funktion                                                            | Info                                  |
|---------------------|---------------------------------------------------------------------|---------------------------------------|
| ***                 | Neuen Kanal hinzufügen                                              | ► Kanäle hinzufügen und konfigurieren |
| ×                   | Ausgewählten Kanal entfernen                                        |                                       |
|                     | Ausgewählten Kanal konfigurieren                                    |                                       |
| Offline/Online      | Auswahl des Trace-Modus                                             |                                       |
| Trace Control       | Menü mit folgenden Befehlen:                                        |                                       |
|                     | Configuration                                                       | ► <u>Trace-Funktion konfigurieren</u> |
|                     | Download Offline Trace Configuration                                | ▶ <u>Download/Upload-Funktionen</u>   |
|                     | Upload Offline Trace Configuration                                  |                                       |
|                     | Upload Offline Trace Configuration And Data                         |                                       |
|                     | Delete Data                                                         |                                       |
| Start Offline Trace | Nur bei Auswahl des Trace-Modus "Offline":<br>Offline-Trace starten | ► <u>Trace-Funktion starten</u>       |
| Start Online Trace  | Nur bei Auswahl des Trace-Modus "Online":<br>Online-Trace starten   |                                       |


\_\_\_\_\_\_

#### 10.1.3 Kanäle hinzufügen und konfigurieren




#### So fügen Sie einen neuen Kanal hinzu:

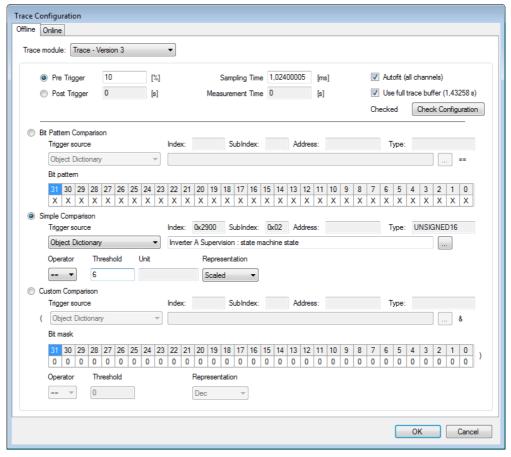
In der Trace-Symbolleiste auf das Symbol klicken.
 Das Dialogfeld Channel wird angezeigt:



Zur Auswahl des Objektes die Schaltfläche Object Dictionary... betätigen.
 Im Dialogfeld Select Index/Subindex werden alle vorhandenen Objekte des Gerätes angezeigt:



- 3. Im Listenfeld das Objekt für den neuen Kanal auswählen.
- 4. Schaltfläche **OK** betätigen, um die Auswahl zu übernehmen und das Dialogfeld *Select Index/Subindex* wieder zu schließen.
- 5. Optional: Im Dialogfeld Channel weitere Einstellungen zur Darstellung des Trace vornehmen.
- 6. Schaltfläche **OK** betätigen, um einen neuen Kanal mit der vorgenommenen Konfiguration hinzuzufügen und das Dialogfeld *Channel* wieder zu schließen.


------

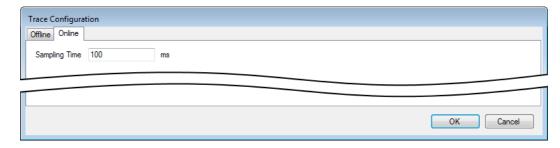
### 10.1.4 Trace-Funktion konfigurieren

Mit dem Befehl **Trace Control** → **Configuration...** öffnen Sie das Dialogfeld *Trace Configuration*.

Je nachdem, welcher Trace-Modus ausgewählt ist, wird die Registerkarte **Offline** oder **Online** im Vordergrund angezeigt.

#### Konfiguration für Trace-Modus "Offline"




[10-1] Beispiel: Trigger-Einstellung für Trigger-Start bei "Inverter Operation Enable"

| Einstellung      | Info                                                                                                                                                                           |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pre/Post Trigger | Auswahl Pre- oder Post-Trigger<br>Sind beide zugehörigen Werte "0", ist kein Pre- oder Post-Trigger definiert.                                                                 |
| Sampling Time    | Zeitintervall für die Aufzeichnung                                                                                                                                             |
| Measurement Time | Wenn die Option <b>Use full trace buffer</b> nicht aktiviert ist:<br>Angabe der Aufzeichnungsdauer                                                                             |
| Autofit          | Wenn diese Option aktiviert ist, wird für alle Kanäle die Darstellungsoption "Fit" verwendet, d. h. die Skalierung der Y-Achse passt sich dem aufgezeichneten Wertebereich an. |

-----

| Einstellung                                                      | Info                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Use full trace buffer                                            | Wenn diese Option aktiviert ist, wird der gesamte im Gerät zur Verfügung stehende Speicher für die Trace-Funktion verwendet. Wenn Sie die Schaltfläche <b>Check Configuration</b> betätigen, wird die in Klammern angezeigte Aufzeichnungsdauer aktualisiert. Diese ist abhängig von der eingestellten Sampling Time, der Anzahl der Kanäle und dem verfügbaren Speicher im Gerät. |
| Bit Pattern Comparison<br>Simple Comparison<br>Custom Comparison | Auswahl des Trigger-Typs und Einstellung der Trigger-Details:  • Triggerquelle (Objekt)  • Bitmuster (für Bitmustervergleich)  • Operator und Schwellwert (für einfachen numerischen Vergleich).                                                                                                                                                                                   |

#### Konfiguration für Trace-Modus "Online"



| Einstellung   | Info                               |
|---------------|------------------------------------|
| Sampling Time | Zeitintervall für die Aufzeichnung |

#### 10.1.5 Trace-Funktion starten

Nachdem Sie einen oder mehrere Kanäle hinzugefügt und die Trace-Funktion konfiguriert haben, kann die Trace-Funktion über den Befehl **Start Online/Offline Trace** gestartet werden.

- Es werden nur die Kanäle aufgezeichnet, bei denen ein Häkchen in der Spalte **Selected** gesetzt ist
- Nach abgeschlossener Trace-Funktion können Sie anhand der Häkchen festlegen, welche der aufgezeichneten Kanäle im Diagramm dargestellt werden sollen.

#### 10.1.6 Download/Upload-Funktionen

Wenn Sie die Trace-Funktion im Trace-Modus "Offline" starten, wird zunächst die Trace-Konfiguration in den MOBILE übertragen. Dieser Vorgang lässt sich auch mit dem Befehl **Trace Control** → **Download Offline Trace Configuration** durchführen.

Eine bereits im MOBILE hinterlegte Trace-Konfiguration können Sie mit dem Befehl **Upload Offline Trace Configuration** zur Wiederverwendung wieder in den »MOBILE Engineer« übertragen.

Mit dem Befehl **Upload Offline Trace Configuration & Data** werden zusätzlich zur Trace-Konfiguration auch die letzten Trace-Daten mit in den »MOBILE Engineer« übertragen.

Mit dem Befehl Delete Data lassen sich schließlich die Trace-Daten im MOBILE löschen.

#### 10.1.7 Diagrammdarstellung anpassen

Auf der Registerkarte **View** werden die aufgezeichneten Trace-Daten in einem Diagramm grafisch dargestellt. Die Darstellung lässt sich über die nachfolgend beschriebenen Funktionen anpassen, sofern die Trace-Funktion gestoppt ist.

------

#### Skalierung der Y-Achse (0 ... 100 %)

Die Darstellung eines Kanals lässt sich schnell über das Kontextmenü (rechte Maustaste) zum Kanal ändern:

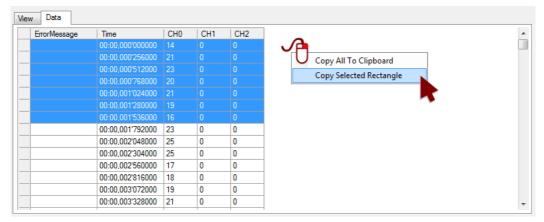
| Kontextmenü-Befehl | Funktion                                                                                                 |
|--------------------|----------------------------------------------------------------------------------------------------------|
| Edit               | Dialogfeld Channel zur Konfiguration des ausgewählten Kanals öffnen                                      |
| Full               | Darstellungsmodus "Full": 0 % und 100 % repräsentieren den kleinsten und den größten Wert des Datentyps  |
| Fit                | Darstellungsmodus "Fit": 0 % und 100 % repräsentieren den kleinsten und den größten aufgezeichneten Wert |
| Dec                | Werte in Dezimaldarstellung anzeigen (Voreinstellung)                                                    |
| Hex                | Werte in Hexadezimaldarstellung anzeigen                                                                 |
| Scaled             | Werte in der physikalischen Einheit anzeigen                                                             |

#### Skalierung der Zeitachse

Durch Veränderung der Zeitbasis im Eingabefeld **Time/Div** lässt sich die Darstellung zeitlich dehnen oder stauchen.

Mit dem Befehl **Diagram Settings** → **Fit Time** wird die Zeitachse so skaliert, dass die gesamte Trace-Aufzeichnung im Diagramm dargestellt wird. Dies ist insbesondere nach einem Online-Trace sinnvoll, da in diesem Trace-Modus die Zeitachse solange kontinuierlich mitläuft, bis die Trace-Funktion gestoppt wird.

#### **Zoom-Funktion**


Mit Hilfe der Zoom-Funktion können Sie einen beliebigen Bereich im Diagramm vergrößert darstellen. Ziehen Sie einfach mit gedrückt gehaltener linker Maustaste einen Rahmen um den zu vergrößernden Bereich auf.

- Durch Klicken auf das Symbol können Sie die letzte Zoom-Aktion wieder rückgängig machen.
- Durch Klicken auf das Symbol 🥄 gehen Sie eine Vergrößerungsstufe zurück.

#### 10.1.8 Anzeige der Trace-Daten in tabellarischer Form

Sie können sich die Trace-Daten auch in tabellarischer Form anzeigen lassen, indem Sie zur Registerkarte **Data** wechseln.

Über das *Kontextmenü* (rechte Maustaste) haben Sie die Möglichkeit, alle Daten oder einen ausgewählten Bereich der Tabelle in die Zwischenablage zu kopieren:



\_\_\_\_\_

#### 10.2 Fehlerspeicher

Der im MOBILE integrierte Fehlerspeicher zeichnet für Diagnosezwecke in chronologischer Reihenfolge vom Gerät erkannte Fehler nichtflüchtig auf.

- Der Fehlerspeicher kann bis zu 32 Fehlereinträge speichern.
- Der aktuellste Fehler bzw. das zuletzt aufgetretene Ereignis steht immer an erster Position.
  - Tritt ein neues Ereignis ein, wenn der Fehlerspeicher bereits voll ist, werden alle Fehlereinträge auf ihre Priorität überprüft. Wird ein Fehlereintrag mit gleicher oder niedriger Priorität als das aktuelle Ereignis gefunden, wird der Fehlereintrag mit der niedrigsten Priorität und dem ältesten Zeitstempel gelöscht und das neue Ereignis an erster Position gespeichert. Andernfalls oder bei gleicher Priorität wird das neue Ereignis verworfen und nicht abgespeichert.
- Der Fehlerspeicher kann über <u>Unified Diagnostic Services (UDS)</u> jederzeit ausgelesen, aktiviert und deaktiviert werden.
- Der Fehlerspeicher unterstützt das Hinzufügen, Aktualisieren und Löschen von Fehlereinträgen.

#### 10.2.1 Aufbau der Fehlereinträge

Neben dem "Diagnostic Trouble Code" (DTC) werden auch zusätzliche Informationen wie z. B. Häufigkeit und Zeitpunkt des Fehlers im Fehlerspeicher gespeichert.

Jeder Fehlereintrag hat eine Größe von 32 Byte mit folgendem Aufbau:

| Byte | Bit | Name            | Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|-----|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    |     | DTC Priority    | Jedem "Diagnostic Trouble Code" (DTC) wird eine Fehlerpriorität zugewiesen. Beim Eintragen eines neuen Fehlers bestimmt die Priorität, welcher bestehende Eintrag aus dem Fehlerspeicher gelöscht wird, falls dieser bereits voll ist. Es gilt: je höher die Nummer, desto kleiner die Priorität.  Priorität 1:  Dies ist die höchste Prioritätsstufe, die nur für sicherheitsrelevante Fehler verwendet wird.  Es dürfen max. so viele Fehler die Prioritätsstufe 1 haben, wie im Chrono-Stack Platz haben.  Fehler mit der Prioritätsstufe 1 können nur durch einen UDS-Tester-Zugriff gelöscht werden, Selbstheilung ist bei diesen Fehlern nicht möglich.  Fehler der Prioritätsstufe 1 dürfen im Fehlerspeicher nicht überschrieben werden.  Priorität 2-7:  Fehler dieser Prioritätsstufe können aus dem Fehlerspeicher gelöscht werden (Selbstheilung, Tester, Überschreiben).  Fehler dieser Prioritätsstufe können durch Fehler mit höherer Priorität überschrieben werden.  Hinweis: Derzeit wird für alle Fehlereinträge die Fehlerpriorität 2 verwendet. |
| 1-3  |     | DTC Number      | ▶ DTC Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4    |     | DTC Status      | ▶ <u>DTC Status</u> Detaillierte Beschreibung in ISO 14229-1, Anhang D.3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5    | 0   | Occurrence Flag | Zeigt an, um welche Art es sich bei dem Eintrag handelt:<br>0: Fehler<br>1: Hinweis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | 1 7 | -               | Reserviert (auf 0 gesetzt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

-----

| Byte Bi | t Name                  | Info                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6-7     | Original Odometer       | <ul> <li>Tachostand beim erstmaligen Auftreten des Fehlers</li> <li>Der Tachostand wird über den CAN-Bus eingelesen. Ist er nicht verfügbar, wird die Nicht-verfügbar-Kennung 0xFFFF eingetragen.</li> <li>Die Auflösung beträgt 16 km/bit. Es wird nach unten abgerundet.</li> <li>Überschreitet der gelesene Wert den Wertebereich, wird nur das Low-Word eingetragen.</li> </ul>                                                                                                                                  |
| 8 - 9   | Most Recent Odometer    | Tachostand beim letztmaligen Auftreten der Fehlers                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 10      | Frequency Counter       | <ul> <li>Dieser Zähler beschreibt, wie oft das Ereignis aufgetreten ist.</li> <li>Beim ersten Auftreten wird der Zähler auf 1 gesetzt.</li> <li>Gezählt wird bis zum Wert 251. Damit bleiben im Fehlerspeicher auch Fehlerkennungen (0xFF, 0xFE) möglich. Wird der Fehler darüber hinaus erneut eingetragen, wird der Zähler nicht mehr inkrementiert.</li> <li>Die Auflösung beträgt 1 count/Bit.</li> </ul>                                                                                                        |
| 11      | Operation Cycle Counter | Dieser Zähler wird bei jedem Start eines Betriebszyklus inkrementiert, wenn der Fehler nicht aktiv ist. Allerdings erfolgt die Inkrementierung erst, wenn nach Zündung-Ein (Klemme 15) eine zusätzliche Zeit von minTimeOpCycle [s] abgelaufen ist.  • Der Startwert beim erstmaligen Auftreten des Ereignisses ist 0.  • Der Zähler wird auf 0 zurückgesetzt, wenn der Fehler erneut eingetragen wird.  • Gezählt wird bis zum Wert 251. Damit bleiben im Fehlerspeicher auch Fehlerkennungen (0xFF, 0xFE) möglich. |
| 12 - 17 | Timestamp               | <ul> <li>Zeit zum Zeitpunkt der Fehlererkennung</li> <li>Anhand des Zeitstempels werden die Fehlereinträge sortiert. Der aktuellste Fehler steht jeweils an erster Stelle. Bei gleichem Zeitstempel stehen die Fehler in Eintragsreihenfolge (zuletzt eingetragener Fehler an erster Stelle).</li> <li>Da nicht zwingend eine Systemzeit von der übergeordneten Steuerung zur Verfügung steht, wird die Zeit vom internen Betriebsstundenzähler verwendet.</li> </ul>                                                |
| 22 - 31 | MC Environment Data     | Umgebungsbedingungen des Motor-Controllers im Moment des Auftretens des Fehlers  • MC Environment Data                                                                                                                                                                                                                                                                                                                                                                                                               |

#### 10.2.1.1 DTC Number

Der 3-Byte "Diagnostic Trouble Code" (DTC) spezifiziert den aufgetretenen Fehler und baut sich gemäß SAE J1939-73, Format Version 4, zusammen.

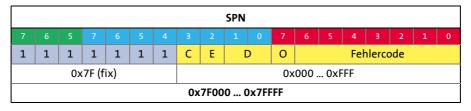
Der Diagnostic Trouble Code beinhaltet die

- Suspect Parameter Number (SPN) = Referenz auf den betroffenen Parameter/Fehler sowie den
- Failure Mode Identifier (FMI) = Typ des Fehlers.

------

#### **Suspect Parameter Number (SPN)**

In der Norm SAE J1939 ist für viele wiederkehrende Parameter in Nutzfahrzeugen eine Suspect Parameter Number (SPN) definiert. Über diese eindeutigen Nummern lassen sich die Komponenten in Fahrzeugen unterschiedlicher Hersteller gleichermassen diagnostizieren.


Da die Parameter des MOBILE sich nicht auf die durch die Norm SAE J1939 festgelegten Nummern abbilden lassen, wird für die Parameter des MOBILE der herstellerspezifische SPN-Nummernbereich (0x7F000 ... 0x7FFFF) verwendet.

Die Suspect Parameter Number (SPN) setzt sich beim MOBILE folgendermaßen zusammen:

| Byte   | Byte 3 (DTC-High-Byte) |   |   |   |   |   |   | Byte 2 (DTC-Middle-Byte) |   |     |   |   |   |   |   |   | Byte 1 (DTC-Low-Byte) |   |   |   |   |   |   |  |  |
|--------|------------------------|---|---|---|---|---|---|--------------------------|---|-----|---|---|---|---|---|---|-----------------------|---|---|---|---|---|---|--|--|
| SPN FA |                        |   |   |   |   |   |   |                          |   | FMI |   |   |   |   |   |   |                       |   |   |   |   |   |   |  |  |
| 7      | 6                      | 5 | 4 | 3 | 2 | 1 | 0 |                          |   |     |   |   |   |   |   |   |                       |   | 4 | 3 | 2 | 1 | 0 |  |  |
| 0      | O Fehlercode           |   |   |   |   |   |   | 1                        | 1 | 1   | 1 | С | Е | [ | ) | 1 | 1                     | 1 |   |   |   |   |   |  |  |

| Byte | Bit   | Name           | Info                                                                   |
|------|-------|----------------|------------------------------------------------------------------------|
| 1    | 5 - 7 | -              | Alle Bits sind fest auf "1" gesetzt.                                   |
| 2    | 0-1   | Device (D)     | 0: Drive Control Unit (DCU) 1: Power Supply Unit (PSU) 2 3: Reserviert |
|      | 2     | Event (E)      | 0: Warnung<br>1: Fehler                                                |
|      | 3     | Controller (C) | 0: Motor-Controller (MC) 1: Application-Controller (APPC)              |
|      | 4 - 7 | -              | Alle Bits sind fest auf "1" gesetzt.                                   |
| 3    | 0-6   | Fehlercode     | Fehlercode (0 127) des MC bzw. APPC                                    |
|      | 7     | Ausgang (O)    | 0: A<br>1: B                                                           |

Die Suspect Parameter Number (SPN) wird in folgender Reihenfolge angegeben:



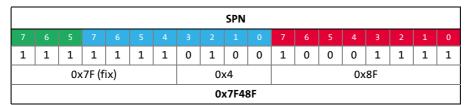
#### Failure Mode Identifier (FMI)

Beim MOBILE wird für alle Fehler der FMI 31 verwendet, somit sind alle 5 FMI-Bits auf "1" gesetzt:

| Byte | Byte 3 (DTC-High-Byte)                |  |  |  |  |  |  | Byte 2 (DTC-Middle-Byte) |   |   |   |   |     |  |  | Byte 1 (DTC-Low-Byte) |  |  |   |   |   |   |   |
|------|---------------------------------------|--|--|--|--|--|--|--------------------------|---|---|---|---|-----|--|--|-----------------------|--|--|---|---|---|---|---|
|      | SPN                                   |  |  |  |  |  |  |                          |   |   |   |   | FMI |  |  |                       |  |  |   |   |   |   |   |
| 7    | 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 |  |  |  |  |  |  | 5                        | 4 | 3 | 2 | 1 | 0   |  |  |                       |  |  |   |   |   |   |   |
|      |                                       |  |  |  |  |  |  |                          |   |   |   |   |     |  |  |                       |  |  | 1 | 1 | 1 | 1 | 1 |

FMI 31 bedeutet "Not Available Or Condition Exists" und kann verwendet werden, wenn die dazugehörige SPN bereits die Fehlerart mitbeschreibt.

## 10.2 Fehlerspeicher


\_\_\_\_\_\_

### **Beispiel**

DTC = 0x8FF4FF (MC: OutB motor temperature sensor defective)

| Byte | Byte 3 (DTC-High-Byte) |   |   |   |   |   |       |      | Byte 2 (DTC-Middle-Byte) |     |  |  |   |  |  |   | Byte 1 (DTC-Low-Byte) |    |     |   |   |   |   |
|------|------------------------|---|---|---|---|---|-------|------|--------------------------|-----|--|--|---|--|--|---|-----------------------|----|-----|---|---|---|---|
|      | S                      |   |   |   |   |   |       |      |                          | SPN |  |  |   |  |  |   |                       |    | FMI |   |   |   |   |
| 7    | 6                      | 5 | 4 | 3 | 2 | 1 | 0     | 7    |                          |     |  |  |   |  |  | 7 | 7 6 5 4 3 2           |    |     |   |   | 1 | 0 |
| 0    | O Fehlercode           |   |   |   |   |   | C E D |      |                          |     |  |  | D |  |  |   |                       |    |     |   |   |   |   |
| 1    | 0                      | 0 | 0 | 1 | 1 | 1 | 1     | 1    | 1 1 1 1 0 1 0 0 1 1 1    |     |  |  |   |  |  |   | 1                     | 1  | 1   | 1 | 1 |   |   |
|      | 0x8F                   |   |   |   |   |   |       | 0xF4 |                          |     |  |  |   |  |  |   | 0x                    | FF |     |   |   |   |   |
|      | 0x8FF4FF               |   |   |   |   |   |       |      |                          |     |  |  |   |  |  |   |                       |    |     |   |   |   |   |

- Ausgang (O) = 1 = B
- Fehlercode = 0b1111 = 15
- Controller (C) = 0 = Motor-Controller (MC)
- Event (E) = 1 = Fehler
- Device (D) = 0b00 = Drive Control Unit (DCU)
- Suspect Parameter Number (SPN) =



10.2 Fehlerspeicher

\_\_\_\_\_

#### 10.2.1.2 DTC Status



Detaillierte Beschreibung in ISO 14229-1, Anhang D.3.

| Bit   | Beschreibung                                                                                                     | Init<br>(Startup) | Clear<br>Diagnostic<br>Information<br>(UDS) | Self<br>Healing | Chrono-<br>Stack<br>Overflow<br>(Replace) | Test<br>failed | Test<br>passed |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------|-------------------|---------------------------------------------|-----------------|-------------------------------------------|----------------|----------------|--|--|--|
| 0     | Fehler aufgetreten                                                                                               | 0*                | 0                                           | -               | -                                         | 1              | 0              |  |  |  |
| 1     | Fehler seit Start des Geräts aufgetreten                                                                         | 0                 | 0                                           | -               | -                                         | 1              | -              |  |  |  |
| 2     | nicht unterstützt                                                                                                | -                 | -                                           | -               | -                                         | -              | -              |  |  |  |
| 3     | Fehler gespeichert (hier<br>bereits beim ersten<br>Auftreten), Fehler kann<br>inzwischen auch inak-<br>tiv sein. | aus Flash         | 0                                           | 0               | 0                                         | 1              | -              |  |  |  |
| 4     | nicht unterstützt                                                                                                | -                 | 1                                           | -               | -                                         | 0              | 0              |  |  |  |
| 5     | Fehler aufgetreten seit<br>dem letzten Aufruf von<br><u>Clear Diagnostic</u><br><u>Information</u> (UDS)         | aus Flash         | 0                                           | -               | -                                         | 1              | -              |  |  |  |
| 6     | nicht unterstützt                                                                                                | 1                 | 1                                           | -               | -                                         | 0              | 0              |  |  |  |
| 7     | nicht unterstützt                                                                                                | -                 | -                                           | -               | -                                         | -              | -              |  |  |  |
| * abv | * abweichend von ISO 14229-1                                                                                     |                   |                                             |                 |                                           |                |                |  |  |  |

#### 10.2.1.3 MC Environment Data

Die Umgebungsbedingungen sind ein Abbild des Systems im Moment des Auftretens des Fehlers. Sie können für die Auswertung der aufgetretenen Fehlers relevant sein. Für den Motor-Controller werden bei jedem Fehler 8 Bytes für Umgebungsbedingungen bereitgestellt. Werden nicht alle Bits bzw. Bytes verwendet, werden nicht benutzte Bits bzw. Bytes auf 0 gesetzt.

223

# 10.2 Fehlerspeicher

-----

## **Umgebungsdaten DCU (Inverter)**

| Byte  | Bit   | Name                | Info                                                                               |  |  |  |  |  |  |  |
|-------|-------|---------------------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1     |       | volDcLink           | Aktuelle DC-Zwischenkreisspannung (-10 1014 V)                                     |  |  |  |  |  |  |  |
| 2     |       | curSAct             | Aktueller Ständerstrom (-10 502 A)                                                 |  |  |  |  |  |  |  |
| 3     | 0     | bVolDLimited        | Status id-Regler 0: keine Begrenzung 1: Begrenzung aktiv                           |  |  |  |  |  |  |  |
|       | 1     | bVolQLimited        | Status iq-Regler 0: keine Begrenzung 1: Begrenzung aktiv                           |  |  |  |  |  |  |  |
|       | 2     | bCurDLimited        | Status Ständerstrombegrenzer in d-Richtung 0: keine Begrenzung 1: Begrenzung aktiv |  |  |  |  |  |  |  |
|       | 3     | bCurQLimited        | Status Ständerstrombegrenzer in q-Richtung 0: keine Begrenzung 1: Begrenzung aktiv |  |  |  |  |  |  |  |
|       | 4     | bTorqueLimited      | Status Drehzahlregler 0: keine Begrenzung 1: Begrenzung aktiv                      |  |  |  |  |  |  |  |
|       | 5     | bTorqueLimited2     | Status Drehzahlregler 2 0: keine Begrenzung 1: Begrenzung aktiv                    |  |  |  |  |  |  |  |
|       | 6     | bFreqCurLimited     | Status Frequenzregler 0: keine Begrenzung 1: Begrenzung aktiv                      |  |  |  |  |  |  |  |
|       | 7     | bVolLimited         | Status Spannungsbegrenzer 0: keine Begrenzung 1: Begrenzung aktiv                  |  |  |  |  |  |  |  |
| 4     | 0     | bDcVolLimiterActive | Status DC-Zwischenkreisregler 0: keine Begrenzung 1: Begrenzung aktiv              |  |  |  |  |  |  |  |
|       | 1     | bVelocityLimited    | Status Lageregler 0: keine Begrenzung 1: Begrenzung aktiv                          |  |  |  |  |  |  |  |
|       | 2     | bFieldWeakened      | Status Feldschwächregler 0: keine Begrenzung 1: Begrenzung aktiv                   |  |  |  |  |  |  |  |
|       | 3 - 7 | -                   | Reserviert                                                                         |  |  |  |  |  |  |  |
| 5 - 6 |       | statusword          | Gerätezustand (CiA402-Statuswort)                                                  |  |  |  |  |  |  |  |
| 7 - 8 |       | function control    | Status verschiedener Funktionen                                                    |  |  |  |  |  |  |  |

## **Umgebungsdaten PSU (Bordnetzwandler)**

| Byte  | Bit | Name             | Info                                           |  |  |  |  |  |  |
|-------|-----|------------------|------------------------------------------------|--|--|--|--|--|--|
| 1     |     | volDcLink        | Aktuelle DC-Zwischenkreisspannung (-10 1014 V) |  |  |  |  |  |  |
| 2     |     | currentSecondary | Aktueller Sekundärstrom (-10 502 A)            |  |  |  |  |  |  |
| 3 - 4 |     | -                | Reserviert                                     |  |  |  |  |  |  |
| 5 - 6 |     | statusword       | Gerätezustand (CiA402-Statuswort)              |  |  |  |  |  |  |
| 7 - 8 |     | -                | Reserviert                                     |  |  |  |  |  |  |

#### Diagnostic Trouble Codes (DTC) 10.2.2

| DTC      | Fehlertext                                                      | Device | Event   | Mögliche Ursache                                                                                                                 | Mögliche Abhilfe                                                                                        |
|----------|-----------------------------------------------------------------|--------|---------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 0x02F0FF | MC: OutA event buffer is full and has missed at least one event | DCU    | Warnung | <ul> <li>Zu viele Kommunikationsstörungen auf dem<br/>Private CAN.</li> <li>Zu viele Fehler im Fehlerspeicher des MC.</li> </ul> | <ul> <li>Kommunikationsstörungen auf Private CAN<br/>beheben.</li> <li>Fehler im MC beheben.</li> </ul> |
| 0x02F1FF | MC: OutA event buffer is full and has missed at least one event | PSU    | Warnung | <ul> <li>Zu viele Kommunikationsstörungen auf dem<br/>Private CAN.</li> <li>Zu viele Fehler im Fehlerspeicher des MC.</li> </ul> | <ul> <li>Kommunikationsstörungen auf Private CAN<br/>beheben.</li> <li>Fehler im MC beheben.</li> </ul> |
| 0x02F8FF | APPC: OutA watchdog reset occurred                              | DCU    | Warnung | Die Triggerung des Reset-Bausteins durch die<br>Software wurde nicht ausgelöst.                                                  | Neustart durchführen. Bei wiederholtem Auftreten das Gerät tauschen.                                    |
| 0x02F9FF | APPC: OutA watchdog reset occurred                              | PSU    | Warnung | Die Triggerung des Reset-Bausteins durch die<br>Software wurde nicht ausgelöst.                                                  | Neustart durchführen. Bei wiederholtem Auftreten das Gerät tauschen.                                    |
| 0x03F4FF | MC: OutA power module over current detected by hardware         | DCU    | Fehler  | Kurzschluss im Motor oder der Motor wurde<br>während drehenden Betrieb unkontrolliert ein-<br>geschaltet.                        | Kabel und Motor auf Kurzschluss überprüfen.                                                             |
| 0x03F5FF | MC: OutA current offset calibration failed                      | PSU    | Fehler  | <ul> <li>Interner Stromsensor oder Messschaltung defekt.</li> <li>EMV-Störungen.</li> </ul>                                      | Gerät tauschen.     EMV-Störungen beheben.                                                              |
| 0x03FCFF | APPC: OutA hardware/software compatibility not given            | DCU    | Fehler  | Eine falsche Softwareversion wurde geladen.                                                                                      | Richtige Softwareversion laden.                                                                         |
| 0x03FDFF | APPC: OutA hardware/software compatibility not given            | PSU    | Fehler  | Eine falsche Softwareversion wurde geladen.                                                                                      | Richtige Softwareversion laden.                                                                         |
| 0x04F4FF | MC: OutA power module current offset calibration failed         | DCU    | Fehler  | <ul><li>Stromsensor oder Messschaltung defekt.</li><li>EMV-Störungen.</li></ul>                                                  | Gerät tauschen.     EMV-Störungen beheben.                                                              |
| 0x04F5FF | MC: OutA output over current detected by hardware               | PSU    | Fehler  | Kurzschluss im DC/DC-Wandler.     Kurzschluss im LV-Bordnetz.                                                                    | <ul> <li>Gerät tauschen.</li> <li>LV-Bordnetz auf Überlast bzw. Kurzschluss<br/>überprüfen.</li> </ul>  |
| 0x05F4FF | MC: OutA power module temperature sensor defective              | DCU    | Fehler  | Der Temperatursensor im Leistungsteil hat einen<br>Kurzschluss oder ist unterbrochen.                                            | Gerät tauschen.                                                                                         |
| 0x05F5FF | MC: Out A power module temperature sensor defective             | PSU    | Fehler  | Der Temperatursensor im DC/DC-Wandler hat einen Kurzschluss oder ist unterbrochen.                                               | Gerät tauschen.                                                                                         |
| 0x06F0FF | MC: OutA power module temperature has reached warning level     | DCU    | Warnung | Die Kühlung ist unzureichend oder fehlt.                                                                                         | Kühlkreislauf überprüfen.                                                                               |
| 0x06F1FF | MC: OutA power module temperature has reached warning level     | PSU    | Warnung | Die Kühlung ist unzureichend oder fehlt.                                                                                         | Kühlkreislauf überprüfen.                                                                               |
| 0x06FCFF | APPC: OutA MC has reset (watchdog or reset chip)                | DCU    | Fehler  | Die Triggerung des Reset-Bausteins durch die<br>Software wurde nicht ausgelöst.                                                  | Neustart durchführen. Bei wiederholtem Auftreten das Gerät tauschen.                                    |
| 0x06FDFF | APPC: OutA MC has reset (watchdog or reset chip)                | PSU    | Fehler  | Die Triggerung des Reset-Bausteins durch die<br>Software wurde nicht ausgelöst.                                                  | Neustart durchführen. Bei wiederholtem Auftreten das Gerät tauschen.                                    |

Diagnose & Fehlermanagement

**BUCHER** hydraulics

| DTC      | Fehlertext                                                      | Device | Event   | Mögliche Ursache                                                                                                                      | Mögliche Abhilfe                                                                              |
|----------|-----------------------------------------------------------------|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 0x07F4FF | MC: OutA power module temperature has reached error level       | DCU    | Fehler  | Die Kühlung ist unzureichend oder fehlt.                                                                                              | Kühlkreislauf überprüfen.                                                                     |
| 0x07F5FF | MC: OutA power module temperature has reached error level       | PSU    | Fehler  | Die Kühlung ist unzureichend oder fehlt.                                                                                              | Kühlkreislauf überprüfen.                                                                     |
| 0x07FCFF | APPC: OutA Fault over FlexIn fault reaction "Quick Stop"        | DCU    | Fehler  | Externer Fehler.                                                                                                                      | System prüfen.                                                                                |
| 0x07FDFF | APPC: OutA Fault over FlexIn fault reaction "Quick Stop"        | PSU    | Fehler  | Externer Fehler.                                                                                                                      | System prüfen.                                                                                |
| 0x08F4FF | MC: OutA power module i*t load error                            | DCU    | Fehler  | Inverter A ist überlastet.                                                                                                            | Last überprüfen.                                                                              |
| 0x08F5FF | MC: OutA transformer core temperature sensor defective          | PSU    | Fehler  | Der Temperatursensor im Transformator hat einen Kurzschluss oder ist unterbrochen.                                                    | Gerät tauschen.                                                                               |
| 0x08FCFF | APPC: OutA Fault over FlexIn fault reaction<br>"Coast to Stop"  | DCU    | Fehler  | Externer Fehler.                                                                                                                      | System prüfen.                                                                                |
| 0x08FDFF | APPC: OutA Fault over FlexIn fault reaction<br>"Coast to Stop"  | PSU    | Fehler  | Externer Fehler.                                                                                                                      | System prüfen.                                                                                |
| 0x09F1FF | MC: OutA transformer core temperature has reached warning level | PSU    | Warnung | Die Temperatur des Transformators hat die<br>Warnschwelle überschritten, weil die Kühlung<br>unzureichend ist oder fehlt.             | Kühlkreislauf überprüfen.                                                                     |
| 0x09F4FF | MC: OutA power module over current detected by software         | DCU    | Fehler  | <ul> <li>Kurzschluss im Motor.</li> <li>Der ausgeschaltete und noch drehende Motor<br/>wurde unkontrolliert eingeschaltet.</li> </ul> | <ul><li>Motor auf Kurzschluss überprüfen.</li><li>Motorleitung überprüfen.</li></ul>          |
| 0x09FCFF | APPC: OutA calibration data parameterization failed             | DCU    | Fehler  | Störungen auf dem Private CAN Bus.                                                                                                    | Private CAN Bus überprüfen.                                                                   |
| 0x09FDFF | APPC: OutA calibration data parameterization failed             | PSU    | Fehler  | Störungen auf dem Private CAN Bus.                                                                                                    | Private CAN Bus überprüfen.                                                                   |
| 0x0AF0FF | MC: OutA power module pattern data inconsistency                | DCU    | Warnung | Die Software ist aufgrund der Rechenzeit überlastet.                                                                                  | Neustart durchführen. Bei wiederholtem Auftreten ist die Rücksprache mit Bucher erforderlich. |
| 0x0AF5FF | MC: OutA transformer core temperature has reached error level   | PSU    | Fehler  | Die Temperatur des Transformators hat die Ab-<br>schaltschwelle überschritten, weil die Kühlung<br>unzureichend ist oder fehlt.       | Kühlkreislauf überprüfen.                                                                     |
| 0x0AFCFF | APPC: OutA calibration data invalid                             | DCU    | Fehler  | Hardware defekt.                                                                                                                      | Gerät tauschen.                                                                               |
| 0x0AFDFF | APPC: OutA calibration data invalid                             | PSU    | Fehler  | Hardware defekt.                                                                                                                      | Gerät tauschen.                                                                               |
| 0x0BF4FF | MC: OutA dc link over voltage detected by hardware              | DCU    | Fehler  | Überspannung im DC-Zwischenkreis.                                                                                                     | DC-Zwischenkreisspannung überprüfen.                                                          |
| 0x0BF5FF | MC: OutA output voltage too low detected by software            | PSU    | Fehler  | Überlast oder Kurzschluss im LV-Bordnetz.                                                                                             | LV-Bordnetz überprüfen.                                                                       |

**10** 

| DTC      | Fehlertext                                              | Device | Event   | Mögliche Ursache                                                                                                                                              | Mögliche Abhilfe                                                                                                                                                             |
|----------|---------------------------------------------------------|--------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x0BF8FF | APPC: OutA Flex Out invalid state                       | DCU    | Warnung | Anschlüsse FLX_OUTx: • Kurzschluss zwischen den Anschlusspins. • Kurzschluss gegen KL30 oder KL31.                                                            | Verdrahtung überprüfen.                                                                                                                                                      |
| 0x0BF9FF | APPC: OutA Flex Out invalid state                       | PSU    | Warnung | Anschlüsse FLX_OUTx: • Kurzschluss zwischen den Anschlusspins. • Kurzschluss gegen KL30 oder KL31.                                                            | Verdrahtung überprüfen.                                                                                                                                                      |
| 0x0CF4FF | MC: OutA dc link over voltage detected by software      | DCU    | Fehler  | Überspannung im DC-Zwischenkreis.                                                                                                                             | DC-Zwischenkreisspannung überprüfen.                                                                                                                                         |
| 0x0CF5FF | MC: OutA output voltage too high detected by hardware   | PSU    | Fehler  | Im LV-Bordnetz wurde an X21 eine Überspan-<br>nung erkannt.                                                                                                   | <ul> <li>LV-Bordnetz überprüfen.</li> <li>Überspannung durch externe Einspeisung<br/>vermeiden.</li> <li>Lastabwurf verringern.</li> </ul>                                   |
| 0x0DF4FF | MC: OutA dc link undervoltage detected by software      | DCU    | Fehler  | Die Spannung im DC-Zwischenkreis liegt unter-<br>halb der eingestellten Schwelle.                                                                             | DC-Zwischenkreisspannung und eingestellte Schwelle überprüfen.                                                                                                               |
| 0x0DF5FF | MC: OutA dc link over voltage detected by hardware      | PSU    | Fehler  | Überspannung im DC-Zwischenkreis.                                                                                                                             | DC-Zwischenkreisspannung überprüfen.                                                                                                                                         |
| 0x0EF4FF | MC: OutA fault of the other inverter on the same device | DCU    | Fehler  | Der Inverter für Motor B hat einen Fehler.                                                                                                                    | Fehler beim Inverter für Motor B beheben oder dessen Überwachung deaktivieren.                                                                                               |
| 0x0FF4FF | MC: OutA motor temperature sensor defective             | DCU    | Fehler  | Der Motor-Temperatursensor hat einen Kurz-<br>schluss oder ist unterbrochen.                                                                                  | Motor-Temperatursensor überprüfen und ggf. austauschen.                                                                                                                      |
| 0x10F0FF | MC: OutA motor temperature has reached warning level    | DCU    | Warnung | <ul> <li>Die Kühlung des Motors ist unzureichend<br/>oder fehlt.</li> <li>Der Motor ist durch mechanische Blockierung<br/>überlastet.</li> </ul>              | Kühlung überprüfen.     Blockierung des Motors beseitigen.                                                                                                                   |
| 0x10F5FF | MC: OutA dc link over voltage detected by software      | PSU    | Fehler  | Überspannung im DC-Zwischenkreis.                                                                                                                             | DC-Zwischenkreisspannung überprüfen.                                                                                                                                         |
| 0x11F4FF | MC: OutA motor temperature has reached error level      | DCU    | Fehler  | <ul> <li>Die Kühlung des Motors ist unzureichend<br/>oder fehlt.</li> <li>Der Motor ist durch mechanische Blockierung<br/>überlastet.</li> </ul>              | Kühlung überprüfen.     Blockierung des Motors beseitigen.                                                                                                                   |
| 0x11F5FF | MC: OutA dc link undervoltage detected by software      | PSU    | Fehler  | Die Spannung im DC-Zwischenkreis liegt unter-<br>halb der eingestellten Schwelle.                                                                             | DC-Zwischenkreisspannung und eingestellte Schwelle überprüfen.                                                                                                               |
| 0x12F4FF | MC: OutA motor stator frequency too high                | DCU    | Fehler  | <ul><li>Falsche Sollwertvorgabe.</li><li>Eingestellter Grenzwert zu niedrig.</li></ul>                                                                        | Sollwertvorgabe überprüfen.     Grenzwert überprüfen.                                                                                                                        |
| 0x12F5FF | MC: OutA board supply voltage error                     | PSU    | Fehler  | <ul> <li>Instabiles LV-Bordnetz.</li> <li>Kl.30 und Kl.31 schlecht kontaktierend.</li> <li>Kurzschluss am Feedback-Stecker.</li> <li>Gerät defekt.</li> </ul> | <ul> <li>LV-Bordnetz überprüfen.</li> <li>Kontaktierung von KL30 und KL31 am Gerät<br/>überprüfen.</li> <li>Feedback-Stecker überprüfen.</li> <li>Gerät tauschen.</li> </ul> |

**BUCHER** hydraulics

| DTC      | Fehlertext                                                      | Device | Event   | Mögliche Ursache                                                                                                                                                                    | Mögliche Abhilfe                                                                                                                                                         |
|----------|-----------------------------------------------------------------|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x13F1FF | MC: OutA interlock open due to open cover sheet                 | PSU    | Warnung | <ul> <li>Lichtsensor für die Detektierung des Gehäusedeckels verschmutzt.</li> <li>Gehäusedeckel verschmutzt.</li> <li>Gehäusedeckel fehlt oder ist fehlerhaft montiert.</li> </ul> | <ul> <li>Lichtsensor bzw. Gehäusedeckel reinigen.</li> <li>Gehäusedeckel korrekt montieren.</li> </ul>                                                                   |
| 0x13F4FF | MC: OutA board supply voltage error                             | DCU    | Fehler  | <ul> <li>Instabiles LV-Bordnetz.</li> <li>Schlechte Kontaktierung von Kl.30 und Kl.31.</li> <li>Kurzschluss am Feedback-Stecker.</li> <li>Gerät defekt.</li> </ul>                  | <ul> <li>LV-Bordnetz überprüfen.</li> <li>Kontaktierung von KL30 und KL31 am Gerät überprüfen.</li> <li>Feedback-Stecker überprüfen.</li> <li>Gerät tauschen.</li> </ul> |
| 0x13FCFF | APPC: OutA KL30 fault detected                                  | DCU    | Fehler  | Überspannung im Bordnetz.                                                                                                                                                           | Bordnetz überprüfen.                                                                                                                                                     |
| 0x13FDFF | APPC: OutA KL30 fault detected                                  | PSU    | Fehler  | Überspannung im Bordnetz.                                                                                                                                                           | Bordnetz überprüfen.                                                                                                                                                     |
| 0x14F4FF | MC: OutA receive PDO timeout                                    | DCU    | Fehler  | Private CAN Empfangsbotschaften werden nicht<br>zyklisch gesendet oder werden vom MC nicht<br>empfangen.                                                                            | Private CAN Kommunikation überprüfen (z. B. fehlender Abschlusswiderstand 120 ohm).                                                                                      |
| 0x14F5FF | MC: OutA task calculation time overrun                          | PSU    | Fehler  | Die Rechenzeit im MC ist unzureichend und es ist<br>ein Tasküberlauf aufgetreten.                                                                                                   | Parametrierung überprüfen.                                                                                                                                               |
| 0x14FCFF | APPC: OutA no valid dataset found                               | DCU    | Fehler  | Der Geräte-Datensatz ist fehlerhaft oder nicht vorhanden.                                                                                                                           | Geräte-Datensatz herunterladen.                                                                                                                                          |
| 0x14FDFF | APPC: OutA no valid dataset found                               | PSU    | Fehler  | Der Geräte-Datensatz ist fehlerhaft oder nicht vorhanden.                                                                                                                           | Geräte-Datensatz herunterladen.                                                                                                                                          |
| 0x15F4FF | MC: OutA NMT not in state operational                           | DCU    | Fehler  | <ul> <li>Über Private CAN werden falsche NMT-Kom-<br/>mandos von einem externen Benutzer gesen-<br/>det.</li> <li>Der APPC sendet keine NMT-Kommandos.</li> </ul>                   | Private CAN Kommunikation überprüfen.                                                                                                                                    |
| 0x15F5FF | MC: OutA system error, analog input or motor feedback DMA error | PSU    | Fehler  | Interner Softwarefehler.                                                                                                                                                            | Hardware defekt, Gerät austauschen.                                                                                                                                      |
| 0x15FCFF | APPC: OutA spi intercom failed                                  | DCU    | Fehler  | Die interne SPI-Kommunikation zwischen APPC und MC ist fehlerhaft.                                                                                                                  | Hardware defekt, Gerät austauschen.                                                                                                                                      |
| 0x15FDFF | APPC: OutA spi intercom failed                                  | PSU    | Fehler  | Die interne SPI-Kommunikation zwischen APPC und MC ist fehlerhaft.                                                                                                                  | Hardware defekt, Gerät austauschen.                                                                                                                                      |
| 0x16F4FF | MC: OutA task calculation time overrun                          | DCU    | Fehler  | Die Rechenzeit im MC ist unzureichend und es ist ein Tasküberlauf aufgetreten.                                                                                                      | Parametrierung überprüfen.                                                                                                                                               |
| 0x16F5FF | MC: OutA receive PDO timeout                                    | PSU    | Fehler  | Private CAN Empfangsbotschaften werden nicht<br>zyklisch gesendet oder werden vom MC nicht<br>empfangen.                                                                            | Private CAN Kommunikation überprüfen (z. B. fehlender Abschlusswiderstand 120 W).                                                                                        |
| 0x16FCFF | APPC: OutA MC firmware download failed                          | DCU    | Fehler  | <ul><li>Störungen auf dem Private CAN Bus.</li><li>Software fehlerhaft.</li></ul>                                                                                                   | <ul><li>Private CAN Bus überprüfen.</li><li>Software aktualisieren.</li></ul>                                                                                            |

| Fehlerspeicher | Diagnose 8        |
|----------------|-------------------|
|                | & Fehlermanagemei |

**10** 

| DTC      | Fehlertext                                             | Device | Event   | Mögliche Ursache                                                                                                                                                        | Mögliche Abhilfe                                                                                                                                   |
|----------|--------------------------------------------------------|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x16FDFF | APPC: OutA MC firmware download failed                 | PSU    | Fehler  | <ul> <li>Störungen auf dem Private CAN Bus.</li> <li>Software fehlerhaft.</li> </ul>                                                                                    | <ul><li>Private CAN Bus überprüfen.</li><li>Software aktualisieren.</li></ul>                                                                      |
| 0x17F4FF | MC: OutA net synchronisation error                     | DCU    | Fehler  | <ul> <li>Netzspannung oder -frequenz im unzulässigen Bereich.</li> <li>Fehlerhafte Verdrahtung der Netzspannungsmessung.</li> </ul>                                     | <ul> <li>Spannungsnetz überprüfen.</li> <li>Verdrahtung der Netzspannungsmessung<br/>überprüfen.</li> </ul>                                        |
| 0x17F5FF | MC: OutA NMT not in state operational                  | PSU    | Fehler  | <ul> <li>Über Private CAN werden falsche NMT-Kommandos von einem externen Benutzer gesendet.</li> <li>Der APPC sendet keine NMT-Kommandos.</li> </ul>                   | Private CAN Kommunikation überprüfen.                                                                                                              |
| 0x17FCFF | APPC: OutA MC firmware start failed                    | DCU    | Fehler  | <ul> <li>Störungen auf dem Private CAN Bus.</li> <li>Software fehlerhaft.</li> </ul>                                                                                    | <ul><li>Private CAN Bus überprüfen.</li><li>Software aktualisieren.</li></ul>                                                                      |
| 0x17FDFF | APPC: OutA MC firmware start failed                    | PSU    | Fehler  | <ul><li>Störungen auf dem Private CAN Bus.</li><li>Software fehlerhaft.</li></ul>                                                                                       | <ul><li>Private CAN Bus überprüfen.</li><li>Software aktualisieren.</li></ul>                                                                      |
| 0x18F4FF | MC: OutA position device signal too low                | DCU    | Fehler  | <ul> <li>Störung beim Positionsgeber.</li> <li>Positionsgeber fehlerhaft verdrahtet.</li> <li>Spannungsversorgung für den Positionsgeber falsch eingestellt.</li> </ul> | <ul> <li>Positionsgeber überprüfen, ggf. austauschen.</li> <li>Verdrahtung überprüfen.</li> <li>Spannungsversorgung korrekt einstellen.</li> </ul> |
| 0x18F5FF | MC: OutA ambient temperature sensor defective          | PSU    | Fehler  | Der Temperatursensor für die Geräteinnenraum-<br>temperatur hat einen Kurzschluss oder ist unter-<br>brochen.                                                           | Gerät austauschen.                                                                                                                                 |
| 0x18FCFF | APPC: OutA Parameterization failed                     | DCU    | Fehler  | <ul> <li>Störungen auf dem Private CAN Bus.</li> <li>Geräte-Datensatz fehlerhaft.</li> </ul>                                                                            | <ul><li>Private CAN Bus überprüfen.</li><li>Geräte-Datensatz aktualisieren.</li></ul>                                                              |
| 0x18FDFF | APPC: OutA Parameterization failed                     | PSU    | Fehler  | <ul> <li>Störungen auf dem Private CAN Bus.</li> <li>Geräte-Datensatz fehlerhaft.</li> </ul>                                                                            | <ul><li>Private CAN Bus überprüfen.</li><li>Geräte-Datensatz aktualisieren.</li></ul>                                                              |
| 0x19F1FF | MC: OutA ambient temperature has reached warning level | PSU    | Warnung | Die Kühlung des Geräteinnenraums ist unzurei-<br>chend oder fehlt.                                                                                                      | Kühlung überprüfen.                                                                                                                                |
| 0x19F4FF | MC: OutA position device signal too high               | DCU    | Fehler  | <ul> <li>Störung beim Positionsgeber.</li> <li>Positionsgeber fehlerhaft verdrahtet.</li> <li>Spannungsversorgung für den Positionsgeber falsch eingestellt.</li> </ul> | <ul> <li>Positionsgeber überprüfen, ggf. austauschen.</li> <li>Verdrahtung überprüfen.</li> <li>Spannungsversorgung korrekt einstellen.</li> </ul> |
| 0x19F8FF | APPC: OutA public CAN receive msg timeout              | DCU    | Warnung | Public CAN Empfangsbotschaften werden nicht zyklisch gesendet oder werden vom Gerät nicht empfangen.                                                                    | Public CAN Kommunikation überprüfen.                                                                                                               |
| 0x19F9FF | APPC: OutA public CAN receive msg timeout              | PSU    | Warnung | Public CAN Empfangsbotschaften werden nicht zyklisch gesendet oder werden vom Gerät nicht empfangen.                                                                    | Public CAN Kommunikation überprüfen.                                                                                                               |
| 0x1AF4FF | MC: OutA resolver calibration failed                   | DCU    | Fehler  | Das Resolversignal ist schlecht aufgrund mangel-<br>hafter Kontaktierung oder falscher Montage.                                                                         | Resolver korrekt montieren bzw. verdrahten.                                                                                                        |

| DTC      | Fehlertext                                                      | Device | Event   | Mögliche Ursache                                                                                                                                                                           | Mögliche Abhilfe                                                                                                                            |
|----------|-----------------------------------------------------------------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 0x1AF5FF | MC: OutA ambient temperature has reached error level            | PSU    | Fehler  | Die Kühlung im Geräteinnenraum ist unzurei-<br>chend oder fehlt.                                                                                                                           | Kühlung überprüfen.                                                                                                                         |
| 0x1AF8FF | APPC: OutA private CAN receive PDO timeout                      | DCU    | Warnung | Private CAN Empfangsbotschaften werden nicht<br>zyklisch gesendet oder werden vom Gerät nicht<br>empfangen.                                                                                | Private CAN Kommunikation überprüfen (z. B. fehlender Abschlusswiderstand 120 W).                                                           |
| 0x1AF9FF | APPC: OutA private CAN receive PDO timeout                      | PSU    | Warnung | Private CAN Empfangsbotschaften werden nicht<br>zyklisch gesendet oder werden vom Gerät nicht<br>empfangen.                                                                                | Private CAN Kommunikation überprüfen (z. B. fehlender Abschlusswiderstand 120 W).                                                           |
| 0x1BF1FF | MC: OutA dc link ripple voltage too high                        | PSU    | Warnung | Der Wechselspannungsanteil im DC-Zwischen-<br>kreis ist zu hoch.                                                                                                                           | DC-Zwischenkreisverbund auf Oszillationen prüfen.                                                                                           |
| 0x1BF4FF | MC: OutA system error, analog input or motor feedback DMA error | DCU    | Fehler  | Hardware defekt.                                                                                                                                                                           | Gerät austauschen.                                                                                                                          |
| 0x1BF8FF | APPC: OutA invalid setpoint(s) received                         | DCU    | Fehler  | Die Sollwerte von der übergeordneter Steuerung<br>sind fehlerhaft.                                                                                                                         | Sollwertbereiche überprüfen.                                                                                                                |
| 0x1BF9FF | APPC: OutA invalid setpoint(s) received                         | PSU    | Fehler  | Die Sollwerte von der übergeordneter Steuerung<br>sind fehlerhaft.                                                                                                                         | Sollwertbereiche überprüfen.                                                                                                                |
| 0x1CF0FF | MC: OutA interlock open due to open cover sheet                 | DCU    | Warnung | <ul> <li>Lichtsensor für die Detektierung des Gehäusedeckels verschmutzt</li> <li>Gehäusedeckel verschmutzt.</li> <li>Gehäusedeckel fehlt oder ist fehlerhaft montiert.</li> </ul>         | <ul> <li>Lichtsensor bzw. Gehäusedeckel reinigen.</li> <li>Gehäusedeckel korrekt montieren.</li> </ul>                                      |
| 0x1CF5FF | MC: OutA a negative output voltage is detected by software      | PSU    | Fehler  | Das LV-Bordnetz ist verpolt angeschlossen.                                                                                                                                                 | LV-Bordnetz überprüfen, Verpolung beheben.                                                                                                  |
| 0x1CF8FF | APPC: OutA spi wuc intercom read failed                         | DCU    | Fehler  | Hardware defekt.                                                                                                                                                                           | Gerät tauschen.                                                                                                                             |
| 0x1CF9FF | APPC: OutA spi wuc intercom read failed                         | PSU    | Warnung | Hardware defekt.                                                                                                                                                                           | Gerät tauschen.                                                                                                                             |
| 0x1DF1FF | MC: OutA plug cover sensor signal low                           | PSU    | Warnung | Der Lichtsensor für die Detektierung des Gehäusedeckels ist verschmutzt.                                                                                                                   | Lichtsensor reinigen.                                                                                                                       |
| 0x1DF4FF | MC: OutA gate driver disabled by APPC                           | DCU    | Fehler  | <ul> <li>Initialisierungsfehler im APPC.</li> <li>Die Firmware ist nicht kompatibel mit der<br/>Hardware.</li> <li>Der Parametersatz ist nicht kompatibel mit<br/>der Firmware.</li> </ul> | <ul> <li>Private CAN Kommunikation überprüfen.</li> <li>Korrekte Firmware verwenden.</li> <li>Korrekten Parametersatz verwenden.</li> </ul> |
| 0x1DFCFF | APPC: OutA spi wuc intercom config failed                       | DCU    | Fehler  | Hardware defekt.                                                                                                                                                                           | Gerät tauschen.                                                                                                                             |
| 0x1DFDFF | APPC: OutA spi wuc intercom config failed                       | PSU    | Fehler  | Hardware defekt.                                                                                                                                                                           | Gerät tauschen.                                                                                                                             |
| 0x1EF1FF | MC: OutA power module i*t load has reached warning level        | PSU    | Warnung | Das Leistungsteil ist überlastet.                                                                                                                                                          | Last überprüfen.                                                                                                                            |
| 0x1EF4FF | MC: OutA motor stall error                                      | DCU    | Fehler  | <ul> <li>Beim sensorlos geregelten Motor wurde das<br/>Kippmoment überschritten.</li> <li>Die Reglerparameter sind nicht korrekt.</li> </ul>                                               | Motorlast überprüfen.     Parametrierung überprüfen.                                                                                        |

**BUCHER** hydraulics

**10** 

| DTC      | Fehlertext                                                | Device | Event   | Mögliche Ursache                                                                                                                                                                           | Mögliche Abhilfe                                                                                                                            |
|----------|-----------------------------------------------------------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 0x1EFCFF | APPC: OutA spi wuc intercom sleep failed                  | DCU    | Fehler  | Hardware defekt.                                                                                                                                                                           | Gerät tauschen.                                                                                                                             |
| 0x1EFDFF | APPC: OutA spi wuc intercom sleep failed                  | PSU    | Fehler  | Hardware defekt.                                                                                                                                                                           | Gerät tauschen.                                                                                                                             |
| 0x1FF0FF | MC: OutA ambient temperature has reached warning level    | DCU    | Warnung | Die Kühlung im Geräteinnenraum ist unzurei-<br>chend oder fehlt.                                                                                                                           | Kühlung überprüfen.                                                                                                                         |
| 0x1FF5FF | MC: OutA power module i*t load error                      | PSU    | Fehler  | Das Leistungsteil ist überlastet.                                                                                                                                                          | Last überprüfen.                                                                                                                            |
| 0x1FF8FF | APPC: OutA public CAN short circuit                       | DCU    | Warnung | Kurzschluss im CAN-Netzwerk.                                                                                                                                                               | CAN-Verdrahtung überprüfen.                                                                                                                 |
| 0x1FF9FF | APPC: OutA public CAN short circuit                       | PSU    | Warnung | Kurzschluss im CAN-Netzwerk.                                                                                                                                                               | CAN-Verdrahtung überprüfen.                                                                                                                 |
| 0x20F4FF | MC: OutA ambient temperature has reached error level      | DCU    | Fehler  | Die Kühlung im Geräteinnenraum ist unzurei-<br>chend oder fehlt.                                                                                                                           | Kühlung überprüfen.                                                                                                                         |
| 0x20F5FF | MC: OutA over current detected by software                | PSU    | Fehler  | <ul> <li>Kurzschluss an den Klemmen X21/B- und<br/>X21/B+.</li> </ul>                                                                                                                      | <ul><li>Anschlüsse auf Kurzschluss überprüfen.</li><li>Leitung überprüfen.</li></ul>                                                        |
| 0x21F4FF | MC: OutA ambient temperature sensor defective             | DCU    | Fehler  | Der Temperatursensor für die Geräteinnenraum-<br>temperatur hat einen Kurzschluss oder ist unter-<br>brochen.                                                                              | Gerät austauschen.                                                                                                                          |
| 0x21F5FF | MC: OutA gate driver disabled by APPC                     | PSU    | Fehler  | <ul> <li>Initialisierungsfehler im APPC.</li> <li>Die Firmware ist nicht kompatibel mit der<br/>Hardware.</li> <li>Der Parametersatz ist nicht mit der Firmware<br/>kompatibel.</li> </ul> | <ul> <li>Private CAN Kommunikation überprüfen.</li> <li>Korrekte Firmware verwenden.</li> <li>Korrekten Parametersatz verwenden.</li> </ul> |
| 0x22F4FF | MC: OutA power module clamping timeout                    | DCU    | Fehler  | Der Motorstrom hat die eingestellte Abschalt-<br>schwelle erreicht (Clamping wird durchgeführt)<br>und die eingestellte Timeout-Zeit für Clamping<br>wurde überschritten.                  | Parametrierung überprüfen.     Last reduzieren.                                                                                             |
| 0x23F0FF | MC: OutA dc link ripple voltage too high                  | DCU    | Warnung | Der Wechselspannungsanteil im DC-Zwischen-<br>kreis ist zu hoch.                                                                                                                           | DC-Zwischenkreisverbund auf Oszillationen prüfen.                                                                                           |
| 0x24F0FF | MC: OutA motor i^2*t load warning                         | DCU    | Warnung | <ul> <li>Der Motor ist überlastet.</li> <li>Die i2×t-Überwachung (thermischer Überlast- schutz) ist falsch parametriert.</li> </ul>                                                        | <ul> <li>Motorlast verringern.</li> <li>Die Parametrierung der i2×t-Überwachung überprüfen.</li> </ul>                                      |
| 0x25F4FF | MC: OutA motor i^2*t load error                           | DCU    | Fehler  | <ul> <li>Der Motor ist überlastet.</li> <li>Die i2×t-Überwachung (thermischer Überlast- schutz) ist falsch parametriert.</li> </ul>                                                        | <ul> <li>Motorlast verringern.</li> <li>Die Parametrierung der i2×t-Überwachung überprüfen.</li> </ul>                                      |
| 0x26F4FF | MC: OutA motor switched off during active field weakening | DCU    | Fehler  | Der Motor wurde bei aktiver Feldschwächung<br>abgeschaltet.                                                                                                                                | Fehlbedienung vermeiden.                                                                                                                    |
| 0x27F4FF | MC: OutA invalid parameter combination selected           | DCU    | Fehler  | Falsche Parameterkombination (z.B. unzulässige<br>Kombination von aktiviertem Generator Mode<br>und deaktiviertem Lichtsensor).                                                            | Parameter überprüfen.                                                                                                                       |
| 0x28F0FF | MC: OutA plug cover sensor signal low                     | DCU    | Warnung | Der Lichtsensor für die Detektierung des Gehäusedeckels ist verschmutzt.                                                                                                                   | Lichtsensor reinigen.                                                                                                                       |

| DTC      | Fehlertext                                                      | Device | Event   | Mögliche Ursache                                                                                                                                                                 | Mögliche Abhilfe                                                                                                            |
|----------|-----------------------------------------------------------------|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 0x29F4FF | MC: OutA motor connection test failed                           | DCU    | Fehler  | <ul> <li>Motor nicht angeschlossen.</li> <li>Motorleitung unterbrochen.</li> <li>Kurzschluss im Motorkabel oder Motor.</li> <li>Zwischenkreisversorgung unterbrochen.</li> </ul> | <ul> <li>Motor anschließen.</li> <li>Motorleitung und Motor prüfen.</li> <li>Zwischenkreisversorgung überprüfen.</li> </ul> |
| 0x2AF0FF | MC: OutA power module i*t load has reached warning level        | DCU    | Warnung | Inverter A ist überlastet.                                                                                                                                                       | Last überprüfen.                                                                                                            |
| 0x2BF4FF | MC: OutA isolation fault detected                               | DCU    | Fehler  | Erdschluss mindestens einer Motorphase                                                                                                                                           | Verdrahtung überprüfen                                                                                                      |
| 0x82F0FF | MC: OutB event buffer is full and has missed at least one event | DCU    | Warnung | <ul> <li>Kommunikationsstörungen auf dem Private<br/>CAN.</li> <li>Zu viele Fehler im Fehlerspeicher des MC.</li> </ul>                                                          | <ul> <li>Kommunikationsstörungen auf Private CAN<br/>beheben.</li> <li>Fehler im MC beheben.</li> </ul>                     |
| 0x82F8FF | APPC: OutB watchdog reset occurred                              | DCU    | Warnung | Die Triggerung des Reset-Bausteins durch die<br>Software wurde nicht ausgelöst.                                                                                                  | Neustart durchführen. Bei wiederholtem Auftreten das Gerät tauschen.                                                        |
| 0x83F4FF | MC: OutB power module over current detected by hardware         | DCU    | Fehler  | <ul> <li>Kurzschluss im Motor.</li> <li>Der ausgeschaltete und noch drehende Motor<br/>wurde unkontrolliert eingeschaltet.</li> </ul>                                            | <ul> <li>Motor auf Kurzschluss überprüfen.</li> <li>Motorleitung überprüfen.</li> </ul>                                     |
| 0x83FCFF | APPC: OutB hardware/software compatibility not given            | DCU    | Fehler  | Eine falsche Softwareversion wurde geladen.                                                                                                                                      | Richtige Softwareversion laden.                                                                                             |
| 0x84F4FF | MC: OutB power module current offset calibration failed         | DCU    | Fehler  | <ul><li>Stromsensor oder Messschaltung defekt.</li><li>EMV-Störungen.</li></ul>                                                                                                  | <ul><li>Gerät tauschen.</li><li>EMV-Störungen beheben.</li></ul>                                                            |
| 0x85F4FF | MC: OutB power module temperature sensor defective              | DCU    | Fehler  | Der Temperatursensor im Leistungsteil hat einen<br>Kurzschluss oder ist unterbrochen.                                                                                            | Gerät tauschen.                                                                                                             |
| 0x86F0FF | MC: OutB power module temperature has reached warning level     | DCU    | Warnung | Die Kühlung ist unzureichend oder fehlt.                                                                                                                                         | Kühlkreislauf überprüfen.                                                                                                   |
| 0x86FCFF | APPC: OutB MC has reset (watchdog or reset chip)                | DCU    | Fehler  | Die Triggerung des Reset-Bausteins durch die<br>Software wurde nicht ausgelöst.                                                                                                  | Neustart durchführen. Bei wiederholtem Auftreten das Gerät tauschen.                                                        |
| 0x87F4FF | MC: OutB power module temperature has reached error level       | DCU    | Fehler  | Die Kühlung ist unzureichend oder fehlt.                                                                                                                                         | Kühlkreislauf überprüfen.                                                                                                   |
| 0x87FCFF | APPC: OutB Fault over FlexIn fault reaction "Quick Stop"        | DCU    | Fehler  | Externer Fehler.                                                                                                                                                                 | System prüfen.                                                                                                              |
| 0x88F4FF | MC: OutB power module i*t load error                            | DCU    | Fehler  | Inverter B ist überlastet.                                                                                                                                                       | Last überprüfen.                                                                                                            |
| 0x88FCFF | APPC: OutB Fault over FlexIn fault reaction "Coast to Stop"     | DCU    | Fehler  | Externer Fehler.                                                                                                                                                                 | System prüfen.                                                                                                              |
| 0x89F4FF | MC: OutB power module over current detected by software         | DCU    | Fehler  | <ul> <li>Kurzschluss im Motor.</li> <li>Der ausgeschaltete und noch drehende Motor<br/>wurde unkontrolliert eingeschaltet.</li> </ul>                                            | <ul> <li>Motor auf Kurzschluss überprüfen.</li> <li>Motorleitung überprüfen.</li> </ul>                                     |
| 0x89FCFF | APPC: OutB calibration data parameterization failed             | DCU    | Fehler  | Störungen auf dem Private CAN Bus.                                                                                                                                               | Private CAN Bus überprüfen.                                                                                                 |

**10** 

| DTC      | Fehlertext                                              | Device | Event   | Mögliche Ursache                                                                                                                                                   | Mögliche Abhilfe                                                                                                                                                             |
|----------|---------------------------------------------------------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x8AF0FF | MC: OutB power module pattern data inconsistency        | DCU    | Warnung | Die Software ist aufgrund der Rechenzeit über-<br>lastet.                                                                                                          | Neustart durchführen. Bei wiederholtem Auftreten ist die Rücksprache mit Bucher erforderlich.                                                                                |
| 0x8AFCFF | APPC: OutB The calibration data invalid                 | DCU    | Fehler  | Hardware defekt                                                                                                                                                    | Gerät tauschen                                                                                                                                                               |
| 0x8BF4FF | MC: OutB dc link over voltage detected by hardware      | DCU    | Fehler  | Überspannung im DC-Zwischenkreis.                                                                                                                                  | DC-Zwischenkreisspannung überprüfen.                                                                                                                                         |
| 0x8BF8FF | APPC: OutB Flex Out invalid state                       | DCU    | Warnung | Anschlüsse FLX_OUTx: • Kurzschluss zwischen den Anschlusspins. • Kurzschluss gegen KL30 oder KL31.                                                                 | Verdrahtung überprüfen.                                                                                                                                                      |
| 0x8CF4FF | MC: OutB dc link over voltage detected by software      | DCU    | Fehler  | Überspannung im DC-Zwischenkreis.                                                                                                                                  | DC-Zwischenkreisspannung überprüfen.                                                                                                                                         |
| 0x8DF4FF | MC: OutB dc link undervoltage detected by software      | DCU    | Fehler  | Die Spannung im DC-Zwischenkreis liegt unter-<br>halb der eingestellten Schwelle.                                                                                  | DC-Zwischenkreisspannung und eingestellte Schwelle überprüfen.                                                                                                               |
| 0x8EF4FF | MC: OutB fault of the other inverter on the same device | DCU    | Fehler  | Der Inverter für Motor A hat einen Fehler.                                                                                                                         | Fehler beim Inverter für Motor A beheben oder dessen Überwachung deaktivieren.                                                                                               |
| 0x8FF4FF | MC: OutB motor temperature sensor defective             | DCU    | Fehler  | Der Motor-Temperatursensor hat einen Kurz-<br>schluss oder ist unterbrochen.                                                                                       | Motor-Temperatursensor überprüfen und ggf. austauschen.                                                                                                                      |
| 0x90F0FF | MC: OutB motor temperature has reached warning level    | DCU    | Warnung | <ul> <li>Die Kühlung des Motors ist unzureichend<br/>oder fehlt.</li> <li>Der Motor ist durch mechanische Blockierung<br/>überlastet.</li> </ul>                   | <ul> <li>Kühlung überprüfen.</li> <li>Blockierung des Motors beseitigen.</li> </ul>                                                                                          |
| 0x91F4FF | MC: OutB motor temperature has reached error level      | DCU    | Fehler  | <ul> <li>Die Kühlung des Motors ist unzureichend<br/>oder fehlt.</li> <li>Der Motor ist durch mechanische Blockierung<br/>überlastet.</li> </ul>                   | <ul> <li>Kühlung überprüfen.</li> <li>Blockierung des Motors beseitigen.</li> </ul>                                                                                          |
| 0x92F4FF | MC: OutB motor stator frequency too high                | DCU    | Fehler  | <ul><li>Falsche Sollwertvorgabe.</li><li>Eingestellter Grenzwert zu niedrig.</li></ul>                                                                             | <ul><li>Sollwertvorgabe überprüfen.</li><li>Grenzwert überprüfen.</li></ul>                                                                                                  |
| 0x93F4FF | MC: OutB board supply voltage error                     | DCU    | Fehler  | <ul> <li>Instabiles LV-Bordnetz.</li> <li>Schlechte Kontaktierung von Kl.30 und Kl.31.</li> <li>Kurzschluss am Feedback-Stecker.</li> <li>Gerät defekt.</li> </ul> | <ul> <li>LV-Bordnetz überprüfen.</li> <li>Kontaktierung von KL30 und KL31 am Gerät<br/>überprüfen.</li> <li>Feedback-Stecker überprüfen.</li> <li>Gerät tauschen.</li> </ul> |
| 0x93FCFF | APPC: OutB KL30 fault detected                          | DCU    | Fehler  | Überspannung im Bordnetz.                                                                                                                                          | Bordnetz überprüfen.                                                                                                                                                         |
| 0x94F4FF | MC: OutB receive PDO timeout                            | DCU    | Fehler  | Private CAN Empfangsbotschaften werden nicht<br>zyklisch gesendet oder werden vom MC nicht<br>empfangen.                                                           | Private CAN Kommunikation überprüfen (z. B. fehlender Abschlusswiderstand 120 W).                                                                                            |
| 0x94FCFF | APPC: OutB no valid dataset found                       | DCU    | Fehler  | Der Geräte-Datensatz ist korrupt oder fehlt.                                                                                                                       | Geräte-Datensatz herunterladen.                                                                                                                                              |

**BUCHER** hydraulics

| DTC      | Fehlertext                                                      | Device | Event   | Mögliche Ursache                                                                                                                                                        | Mögliche Abhilfe                                                                                                                                   |
|----------|-----------------------------------------------------------------|--------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0x95F4FF | MC: OutB NMT not in state operational                           | DCU    | Fehler  | <ul> <li>Über Private CAN werden falsche NMT-Kom-<br/>mandos von einem externen Benutzer gesen-<br/>det.</li> <li>Der APPC sendet keine NMT-Kommandos.</li> </ul>       | Private CAN Kommunikation überprüfen.                                                                                                              |
| 0x95FCFF | APPC: OutB spi intercom failed                                  | DCU    | Fehler  | Die interne SPI-Kommunikation zwischen APPC und MC ist fehlerhaft.                                                                                                      | Hardware defekt, Gerät austauschen.                                                                                                                |
| 0x96F4FF | MC: OutB task calculation time overrun                          | DCU    | Fehler  | Die Rechenzeit im MC ist unzureichend und es ist<br>ein Tasküberlauf aufgetreten.                                                                                       | Parametrierung überprüfen.                                                                                                                         |
| 0x96FCFF | APPC: OutB MC firmware download failed                          | DCU    | Fehler  | <ul><li>Störungen auf dem Private CAN Bus.</li><li>Software fehlerhaft.</li></ul>                                                                                       | Private CAN Bus überprüfen.     Software aktualisieren.                                                                                            |
| 0x97F4FF | MC: OutB net synchronisation error                              | DCU    | Fehler  | <ul> <li>Netzspannung oder -frequenz im unzulässigen Bereich.</li> <li>Fehlerhafte Verdrahtung der Netzspannungsmessung.</li> </ul>                                     | Spannungsnetz überprüfen.     Verdrahtung der Netzspannungsmessung überprüfen.                                                                     |
| 0x97FCFF | APPC: OutB MC firmware start failed                             | DCU    | Fehler  | <ul> <li>Störungen auf dem Private CAN Bus.</li> <li>Software fehlerhaft.</li> </ul>                                                                                    | <ul><li>Private CAN Bus überprüfen.</li><li>Software aktualisieren.</li></ul>                                                                      |
| 0x98F4FF | MC: OutB position device signal too low                         | DCU    | Fehler  | <ul> <li>Störung beim Positionsgeber.</li> <li>Positionsgeber fehlerhaft verdrahtet.</li> <li>Spannungsversorgung für den Positionsgeber falsch eingestellt.</li> </ul> | <ul> <li>Positionsgeber überprüfen, ggf. austauschen.</li> <li>Verdrahtung überprüfen.</li> <li>Spannungsversorgung korrekt einstellen.</li> </ul> |
| 0x98FCFF | APPC: OutB Parameterization failed                              | DCU    | Fehler  | <ul> <li>Störungen auf dem Private CAN Bus.</li> <li>Geräte-Datensatz fehlerhaft.</li> </ul>                                                                            | Private CAN Bus überprüfen.     Geräte-Datensatz aktualisieren.                                                                                    |
| 0x99F4FF | MC: OutB position device signal too high                        | DCU    | Fehler  | <ul> <li>Störung beim Positionsgeber.</li> <li>Positionsgeber fehlerhaft verdrahtet.</li> <li>Spannungsversorgung für den Positionsgeber falsch eingestellt.</li> </ul> | <ul> <li>Positionsgeber überprüfen, ggf. austauschen.</li> <li>Verdrahtung überprüfen.</li> <li>Spannungsversorgung korrekt einstellen.</li> </ul> |
| 0x99F8FF | APPC: OutB public CAN receive msg timeout                       | DCU    | Warnung | Public CAN Empfangsbotschaften werden nicht zyklisch gesendet oder werden vom Gerät nicht empfangen.                                                                    | Public CAN Kommunikation überprüfen.                                                                                                               |
| 0x9AF4FF | MC: OutB resolver calibration failed                            | DCU    | Fehler  | Das Resolversignal ist schlecht aufgrund mangel-<br>hafter Kontaktierung oder falscher Montage.                                                                         | Resolver korrekt montieren bzw. verdrahten.                                                                                                        |
| 0x9AF8FF | APPC: OutB private CAN receive PDO timeout                      | DCU    | Warnung | Private CAN Empfangsbotschaften werden nicht zyklisch gesendet oder werden vom Gerät nicht empfangen.                                                                   | Private CAN Kommunikation überprüfen (z. B. fehlender Abschlusswiderstand 120 W).                                                                  |
| 0x9BF4FF | MC: OutB system error, analog input or motor feedback DMA error | DCU    | Fehler  | Hardware defekt.                                                                                                                                                        | Gerät austauschen.                                                                                                                                 |
| 0x9BF8FF | APPC: OutB invalid setpoint(s) received                         | DCU    | Fehler  | Die Sollwerte von der übergeordneter Steuerung sind fehlerhaft.                                                                                                         | Sollwertbereiche überprüfen.                                                                                                                       |

| DTC      | Fehlertext                                                | Device | Event   | Mögliche Ursache                                                                                                                                                                           | Mögliche Abhilfe                                                                                                                            |
|----------|-----------------------------------------------------------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 0x9CF0FF | MC: OutB interlock open due to open cover sheet           | DCU    | Warnung | <ul> <li>Lichtsensor für die Detektierung des Gehäusedeckels verschmutzt</li> <li>Gehäusedeckel verschmutzt.</li> <li>Gehäusedeckel fehlt oder ist fehlerhaft montiert.</li> </ul>         | <ul> <li>Lichtsensor bzw. Gehäusedeckel reinigen.</li> <li>Gehäusedeckel korrekt montieren.</li> </ul>                                      |
| 0x9CF8FF | APPC: OutB spi wuc intercom read failed                   | DCU    | Warnung | Hardware defekt.                                                                                                                                                                           | Gerät austauschen.                                                                                                                          |
| 0x9DF4FF | MC: OutB gate driver disabled by APPC                     | DCU    | Fehler  | <ul> <li>Initialisierungsfehler im APPC.</li> <li>Die Firmware ist nicht kompatibel mit der<br/>Hardware.</li> <li>Der Parametersatz ist nicht mit der Firmware<br/>kompatibel.</li> </ul> | <ul> <li>Private CAN Kommunikation überprüfen.</li> <li>Korrekte Firmware verwenden.</li> <li>Korrekten Parametersatz verwenden.</li> </ul> |
| 0x9DFCFF | APPC: OutB spi wuc intercom config failed                 | DCU    | Fehler  | Hardware defekt.                                                                                                                                                                           | Gerät austauschen.                                                                                                                          |
| 0x9EF4FF | MC: OutB motor stall error                                | DCU    | Fehler  | <ul> <li>Beim sensorlos geregelten Motor wurde das<br/>Kippmoment überschritten.</li> <li>Die Reglerparameter sind nicht korrekt.</li> </ul>                                               | Motorlast überprüfen.     Parametrierung überprüfen.                                                                                        |
| 0x9EFCFF | APPC: OutB spi wuc intercom sleep failed                  | DCU    | Fehler  | Hardware defekt.                                                                                                                                                                           | Gerät austauschen.                                                                                                                          |
| 0x9FF0FF | MC: OutB ambient temperature has reached warning level    | DCU    | Warnung | Die Kühlung im Geräteinnenraum ist unzurei-<br>chend oder fehlt.                                                                                                                           | Kühlung überprüfen.                                                                                                                         |
| 0x9FF8FF | APPC: OutB public CAN short circuit                       | DCU    | Warnung | Kurzschluss im CAN-Netzwerk.                                                                                                                                                               | CAN-Verdrahtung überprüfen.                                                                                                                 |
| 0xA0F4FF | MC: OutB ambient temperature has reached error level      | DCU    | Fehler  | Die Kühlung im Geräteinnenraum ist unzurei-<br>chend oder fehlt.                                                                                                                           | Kühlung überprüfen.                                                                                                                         |
| 0xA1F4FF | MC: OutB ambient temperature sensor defective             | DCU    | Fehler  | Der Temperatursensor für die Geräteinnenraum-<br>temperatur hat einen Kurzschluss oder ist unter-<br>brochen.                                                                              | Gerät austauschen.                                                                                                                          |
| 0xA2F4FF | MC: OutB power module clamping timeout                    | DCU    | Fehler  | Der Motorstrom hat die eingestellte Abschalt-<br>schwelle erreicht (Clamping wird durchgeführt)<br>und die eingestellte Timeout-Zeit für Clamping<br>wurde überschritten.                  | <ul><li>Parametrierung überprüfen.</li><li>Last reduzieren.</li></ul>                                                                       |
| 0xA3F0FF | MC: OutB dc link ripple voltage too high                  | DCU    | Warnung | Der Wechselspannungsanteil im DC-Zwischen-<br>kreis ist zu hoch.                                                                                                                           | DC-Zwischenkreisverbund auf Oszillationen prüfen.                                                                                           |
| 0xA4F0FF | MC: OutB motor i^2*t load warning                         | DCU    | Warnung | <ul> <li>Der Motor ist überlastet.</li> <li>Die i2×t-Überwachung (thermischer Überlastschutz) ist falsch parametriert.</li> </ul>                                                          | <ul> <li>Motorlast verringern.</li> <li>Die Parametrierung der i2×t-Überwachung überprüfen.</li> </ul>                                      |
| 0xA5F4FF | MC: OutB motor i^2*t load error                           | DCU    | Fehler  | <ul> <li>Der Motor ist überlastet.</li> <li>Die i2×t-Überwachung (thermischer Überlastschutz) ist falsch parametriert.</li> </ul>                                                          | <ul> <li>Motorlast verringern.</li> <li>Die Parametrierung der i2×t-Überwachung überprüfen.</li> </ul>                                      |
| 0xA6F4FF | MC: OutB motor switched off during active field weakening | DCU    | Fehler  | Der Motor wurde bei aktiver Feldschwächung<br>abgeschaltet.                                                                                                                                | Fehlbedienung vermeiden.                                                                                                                    |

**10** 

Diagnose & Fehlermanagement

| DTC      | Fehlertext                                               | Device | Event   | Mögliche Ursache                                                                                                                 | Mögliche Abhilfe                                      |
|----------|----------------------------------------------------------|--------|---------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 0xA7F4FF | MC: OutB invalid parameter combination selected          | DCU    | Fehler  | Falsche Parameterkombination (z.B. unzulässige<br>Kombination von aktiviertem Generator Mode<br>und deaktiviertem Lichtsensor).  | Parameter überprüfen.                                 |
| 0xA8F0FF | MC: OutB plug cover sensor signal low                    | DCU    | Warnung | Der Lichtsensor für die Detektierung des Gehäusedeckels ist verschmutzt.                                                         | Lichtsensor reinigen.                                 |
| 0xA9F4FF | MC: OutB motor connection test failed                    | DCU    | Fehler  | <ul><li> Motor nicht angeschlossen.</li><li> Motorleitung unterbrochen.</li><li> Kurzschluss im Motorkabel oder Motor.</li></ul> | Motor anschließen.     Motorleitung und Motor prüfen. |
| 0xAAF0FF | MC: OutB power module i*t load has reached warning level | DCU    | Warnung | Inverter B ist überlastet.                                                                                                       | Last überprüfen.                                      |
| 0xABF4FF | MC: OutB isolation fault detected                        | DCU    | Fehler  | Erdschluss mindestens einer Motorphase.                                                                                          | Verdrahtung überprüfen.                               |

10.2 Fehlerspeicher

\_\_\_\_\_\_

## 10.2.3 Fehlereinträge löschen

Das Löschen eines Fehlereintrags kann durch folgende Aktionen ausgelöst werden:

- Externe Lösch-/Reset-Anfrage für einen einzelnen "Diagnostic Trouble Code" (DTC) über Tester Tool (Unified Diagnostic Services: \$14: Clear Diagnostic Information)
- Selbstheilung des entsprechenden Fehlers (aktuell noch nicht implementiert)

10.3 SAE J1939 Diagnose-Meldungen (DM)

\_\_\_\_\_

#### 10.3 SAE J1939 Diagnose-Meldungen (DM)

Der Diagnoseumfang ist in der Norm SAE J1939-73 (Application Layer - Diagnostics) beschrieben. Die Diagnose-Meldungen DM1 - DM52 lehnen sich weitgehend an die On-Board-Diagnose OBD (ISO 15031/J1979) an, die im PKW-Bereich für die Diagnose während des Fahrbetriebs verwendet wird.

Die On-Board-Diagnose (J1939 im Nutzfahrzeugbereich und J1979 bei den PKWs) ist für abgasrelevante Systeme gesetzlich vorgeschrieben. Für den MOBILE besteht diese Verpflichtung somit nicht. Trotzdem unterstützt der MOBILE für die Fehlerbenachrichtigung an die übergeordnete Steuerung während dem Fahrbetrieb die J1939-Diagnose-Meldung DM1.

#### 10.3.1 DM1 - Active Diagnostic Trouble Codes

Mit der Diagnose-Meldung DM1 werden alle aktuell anstehenden Fehler sowie der Status der Fehler- und Warnungs-Lampen zyklisch übertragen. Sind keine Fehler aktiv, wird die Meldung trotzdem zyklisch abgesetzt.



### Hinweis!

In der Voreinstellung ist das zyklische Senden der Diagnose-Meldung DM1 deaktiviert. Durch die Einstellung "1" im Objekt <u>0x4020:0x20</u> lässt sich das zyklische Senden aktivieren.

#### Transportprotokoll

Die Länge der Meldung (Datenbytes) variiert mit der Anzahl der aktiven Fehler. Sobald mehr als 8 Bytes via CAN übertragen werden sollen, wird ein Transportprotokoll benötigt. Da die Meldung nicht für einen bestimmten Empfänger gedacht ist, wird das Transportprotokoll BAM (Broadcast Announce Message) verwendet, das nur in eine Richtung geht.

#### Aufbau der Diagnose-Meldung

| CAN-ID     |                             | Zykluszeit                               | Sender | Empfänger |
|------------|-----------------------------|------------------------------------------|--------|-----------|
| 0x18FECAyy | Prio: 6, PGN: 65226, SA: yy | 1000 ms<br>(oder bei DTC-Statusänderung) | уу     | Alle      |

| Byte | Bit                           | Name                                 | Wertebereich                                                   | Info                                                      |  |
|------|-------------------------------|--------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|--|
| 0    | 0 1                           | Protect Lamp Status                  | 0 3                                                            | Lampenstati:                                              |  |
|      | 2 3 Amber Warning Lamp Status |                                      | 0 3                                                            | 0: Lampe aus<br>1: Lampe an                               |  |
|      | 4 5                           | Red Stop Lamp Status                 | 0 3                                                            | 1. Lampe an                                               |  |
|      | 6 7                           | Malfunction Indicator Lamp<br>Status | 0 3                                                            |                                                           |  |
| 1    |                               | Lamp Flashing                        | immer 0xFF                                                     | Nicht implementiert                                       |  |
| 2    |                               | DTC-High-Byte                        | 0x000000 0xFFFFFF                                              | Diagnostic Trouble Code (DTC)                             |  |
| 3    |                               | DTC-Middle-Byte                      | Eine Liste aller MOBILE-DTCs finden Sie im Kapitel "Diagnostic | DTC Number des ersten aktiven Fehlers oder 0x000000, wenn |  |
| 4    |                               | DTC-Low-Byte                         | Trouble Codes (DTC)"                                           | kein Fehler aktiv ist.                                    |  |

SAE J1939 Diagnose-Meldungen (DM)

-----

| Byte | Bit | Name                  | Wertebereich                     | Info                                                                                               |
|------|-----|-----------------------|----------------------------------|----------------------------------------------------------------------------------------------------|
| 5    | 0 6 | Occurrence Count      | 0 126<br>(127 = nicht verfügbar) | Anzahl, wie oft der Fehler aufgetreten ist.                                                        |
|      | 7   | SPN Conversion Method | immer 0                          | Konvertierung nach SAE J1939-<br>73, Format Version 4                                              |
| 6-7  |     | -                     | 0x0000 0xFFFF                    | Erste DTC-Bytes des nächsten aktiven Fehlers oder 0xFFFF, wenn nur ein oder kein Fehler aktiv ist. |

#### Aufbau der Diagnose-Meldung bei mehreren aktiven Fehlern

Das folgende Beispiel zeigt den Aufbau der Diagnose-Meldung bei drei aktiven Fehlern:

| Byte 0      | 1    | 2 | 3      | 4 | 5                       | 6 | 7      | 8 | 9                       | 10 | 11     | 12 | 13                      |
|-------------|------|---|--------|---|-------------------------|---|--------|---|-------------------------|----|--------|----|-------------------------|
| Lampenstati | 0xFF | [ | OTC (1 | ) | Occurrence<br>Count (1) | [ | OTC (2 | ) | Occurrence<br>Count (2) | [  | OTC (3 | )  | Occurrence<br>Count (3) |

#### Lampenstati

Die Lampenstati ergeben sich aus den aktuellen Zuständen (aktiv/passiv) aller vom Steuergerät unterstützten Fehler/Überwachungen. Somit werden die Zustände aller Fehler in nur 4 Lampen zusammengefasst. Im Fahrzeug werden die Lampenstati wiederum aus den DM1-Meldungen aller Steuergeräte zusammengefasst und am Armaturenbrett angezeigt.

Pro Inverterausgang und Fehlerart können die dazugehörigen Lampen konfiguriert werden. Die Lampen sind also nicht für jeden Fehler, sondern für jede Fehlerart frei konfigurierbar.

Folgende Fehlerarten werden unterschieden:

| Fehlerart         | Beschreibung                                                                  |
|-------------------|-------------------------------------------------------------------------------|
| Fehler            | Inverter ist definitiv ausgeschaltet, Wiedereinschalten nur über Klemme 15.   |
| temporärer Fehler | Inverter ist ausgeschaltet, automatisches Wiedereinschalten aktiv.            |
| Warnung           | Warnhinweis, führt nicht zur Abschaltung des Inverters, evtl. Derating aktiv. |

Die Konfiguration erfolgt bit-codiert. Die Zuweisung einer Fehlerart zu einer Lampe erfolgt durch Setzen des entsprechenden Bits auf "1". In der Voreinstellung ist noch keine Lampe konfiguriert.

| Lampe                      | Zuordnung Fehlerart zu Lampe |            |            |                   |            |            |            |  |
|----------------------------|------------------------------|------------|------------|-------------------|------------|------------|------------|--|
|                            |                              | War        | nung       | temporärer Fehler |            | Fehler     |            |  |
|                            |                              | Inverter B | Inverter A | Inverter B        | Inverter A | Inverter B | Inverter A |  |
|                            |                              | Bit 5      | Bit 4      | Bit 3             | Bit 2      | Bit 1      | Bit 0      |  |
| Protect Lamp               | 0x4020:0x21                  | 0          | 0          | 0                 | 0          | 0          | 0          |  |
| Amber Warning Lamp         | 0x4020:0x22                  | 0          | 0          | 0                 | 0          | 0          | 0          |  |
| Red Stop Lamp              | 0x4020:0x23                  | 0          | 0          | 0                 | 0          | 0          | 0          |  |
| Malfunction Indicator Lamp | <u>0x4020:0x24</u>           | 0          | 0          | 0                 | 0          | 0          | 0          |  |

10.4 Bedeutung der Warnungs- und Fehlerbits im MC-Statuswort 1 & 2

\_\_\_\_\_\_

## 10.4 Bedeutung der Warnungs- und Fehlerbits im MC-Statuswort 1 & 2

### MC-Statuswort 1

| Bit | Bedeutung bei DCU (Inverter)                                                                                                           |   | Bedeutung bei PSU (Bordnetzwandler)                                            |        |
|-----|----------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------|--------|
|     | Diagnoseparameter:<br>0x2900:0x05 - Inverter A Supervision: latched status 1<br>0x3100:0x05 - Inverter B Supervision: latched status 1 | * | Diagnoseparameter:<br>0x2900:0x05 - DC Converter Supervision: latched status 1 | *      |
| 0   | Im Ereignisspeicher liegt ein neuer Eintrag seit dem letztem Upload vor.                                                               | 0 | Im Ereignisspeicher liegt ein neuer Eintrag seit dem letztem Upload vor.       | 0      |
| 1   | Ereignisspeicher ist voll, mindestens ein Eintrag ging verloren.                                                                       | 0 | Ereignisspeicher ist voll, mindestens ein Eintrag ging verloren.               | 0      |
| 2   | Leistungsteil: Hardware hat Überstrom erkannt.                                                                                         | 1 | Strom-Offset-Kalibrierung fehlgeschlagen.                                      | 1      |
| 3   | Leistungsteil: Strom-Offset-Kalibrierung fehlgeschlagen.                                                                               | 1 | Hardware hat zu hohen Ausgangsstrom erkannt.                                   | 1      |
| 4   | Leistungsteil: Temperatursensor defekt.                                                                                                | 1 | Temperatursensor 1 defekt.                                                     | 1      |
| 5   | Leistungsteil: Temperatur hat Warnschwelle erreicht.                                                                                   | 0 | Temperatur 1 hat Warnschwelle erreicht.                                        | 0      |
| 6   | Leistungsteil: Temperatur hat Fehlerschwelle erreicht.                                                                                 | 1 | Temperatur 1 hat Fehlerschwelle erreicht.                                      | 1      |
| 7   | Leistungsteil: Ixt-Überlast                                                                                                            | 1 | Temperatursensor 2 defekt.                                                     | 1      |
| 8   | Leistungsteil: Firmware hat Überstrom erkannt.                                                                                         | 1 | Temperatur 2 hat Warnschwelle erreicht.                                        | 0      |
| 9   | Leistungsteil: inkonsistentes PWM-Muster.                                                                                              | 0 | Temperatur 2 hat Fehlerschwelle erreicht.                                      | 1      |
| 10  | DC-Zwischenkreis: Hardware hat Überspannung erkannt.                                                                                   | 1 | Firmware hat zu niedrige Ausgangsspannung erkannt.                             | 1      |
| 11  | DC-Zwischenkreis: Firmware hat Überspannung erkannt.                                                                                   | 1 | Hardware hat zu hohe Ausgangsspannung erkannt.                                 | 1      |
| 12  | DC-Zwischenkreis: Firmware hat Unterspannung erkannt.                                                                                  | 1 | DC-Zwischenkreis: Hardware hat Überspannung erkannt.                           | 1      |
| 13  | Beim anderen Inverter im MOBILE liegt eine Störung vor.                                                                                | 1 | reserviert                                                                     | $\top$ |
| 14  | Motor-Temperatursensor defekt.                                                                                                         | 1 | reserviert                                                                     | 1      |
| 15  | Motor-Temperatur hat Warnschwelle erreicht.                                                                                            | 0 | DC-Zwischenkreis: Firmware hat Überspannung erkannt.                           | 1      |
| 16  | Motor-Temperatur hat Fehlerschwelle erreicht.                                                                                          | 1 | DC-Zwischenkreis: Firmware hat Unterspannung erkannt.                          | 1      |
| 17  | Motor-Statorfrequenz zu hoch.                                                                                                          | 1 | Spannungsversorgung des MOBILE ausgefallen oder gestört.                       | 1      |
| 18  | Spannungsversorgung des MOBILE ausgefallen oder gestört.                                                                               | 1 | MOBILE-Abdeckung geöffnet (InterLock).                                         | 0      |
| 19  | Kein PDO empfangen (Zeitüberschreitung).                                                                                               | 1 | Programm Zeitüberlauf                                                          | 1      |
| 20  | Netzwerkmanagement (NMT) nicht im Zustand "Operational".                                                                               | 1 | Systemfehler, Fehler bei analogen Eingängen oder Motor-Rückführung.            | 1      |
| 21  | Programm Zeitüberlauf                                                                                                                  | 1 | Kein PDO empfangen (Zeitüberschreitung).                                       | 1      |
| 22  | Fehler Netzsynchronistation                                                                                                            | 1 | Netzwerkmanagement (NMT) nicht im Zustand "Operational".                       | 1      |
| 23  | Positionsgebersignal zu schwach.                                                                                                       | 1 | MOBILE Innenraum-Temperatursensor defekt.                                      | 1      |
| 24  | Positionsgebersignal zu stark.                                                                                                         | 1 | MOBILE Innenraum-Temperatur hat Warnschwelle erreicht.                         | 0      |
| 25  | Resolver-Kalibrierung fehlgeschlagen.                                                                                                  | 1 | MOBILE Innenraum-Temperatur hat Fehlerschwelle erreicht.                       | 1      |
| 26  | Systemfehler, Fehler bei analogen Eingängen oder Motor-Rückführung.                                                                    | 1 | Zu hohe überlagerte Wechselspannung im DC-Zwischenkreis.                       | 0      |
| 27  | MOBILE-Abdeckung geöffnet (InterLock).                                                                                                 | 0 | Eine negative Ausgangsspannung wurde erkannt.                                  | 1      |
| 28  | Leistungsteil wurde vom Application-Controller gesperrt.                                                                               | 1 | MOBILE-Abdeckung: Sensorsignal zu schwach.                                     | 0      |
| 29  | Kipp-Überwachung hat blockierten Motor erkannt                                                                                         | 1 | Leistungsteil: Auslastung I×t hat Warnschwelle erreicht.                       | 0      |
| 30  | MOBILE Innenraum-Temperatur hat Warnschwelle erreicht.                                                                                 | 0 | Leistungsteil: Auslastung I×t hat Fehlerschwelle erreicht.                     | 1      |
| 31  | MOBILE Innenraum-Temperatur hat Fehlerschwelle erreicht.                                                                               | 1 | Firmware hat Überstrom erkannt.                                                | 1      |
|     |                                                                                                                                        |   | * Reaktion: 0 = Warnung, 1 =                                                   | Fehler |

240 BUCHER
hydraulics 300-l-9052004-DE-04/09.2023

# Diagnose & Fehlermanagement Bedeutung der Warnungs- und Fehlerbits im MC-Statuswort 1 & 2 10

10.4

### MC-Statuswort 2

| Bit   | Bedeutung bei DCU (Inverter)                                                                                                           |   | Bedeutung bei PSU (Bordnetzwandler)                                            |   |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------|---|--|--|
|       | Diagnoseparameter:<br>0x2900:0x07 - Inverter A Supervision: latched status 1<br>0x3100:0x07 - Inverter B Supervision: latched status 2 | * | Diagnoseparameter:<br>0x2900:0x07 - DC Converter Supervision: latched status 1 | * |  |  |
| 0     | MOBILE Innenraum-Temperatursensor defekt.                                                                                              | 1 | Leistungsteil wurde vom Application Controller gesperrt.                       | 1 |  |  |
| 1     | Leistungsteil: Clamping-Zeitüberschreitung                                                                                             | 1 | reserviert                                                                     |   |  |  |
| 2     | Zu hohe überlagerte Wechselspannung im DC-Zwischenkreis.                                                                               | 0 | reserviert                                                                     |   |  |  |
| 3     | Motorauslastung (I2xt) hat Warnschwelle erreicht.                                                                                      | 0 | reserviert                                                                     |   |  |  |
| 4     | Motorauslastung (I2xt) hat Fehlerschwelle erreicht.                                                                                    | 1 | reserviert                                                                     |   |  |  |
| 5     | Motor wurde bei aktiver Feldschwächung ausgeschaltet                                                                                   | 1 | reserviert                                                                     |   |  |  |
| 6     | Ungültige Parameterkombination ausgewählt                                                                                              | 1 | reserviert                                                                     |   |  |  |
| 7     | Sensor MOBILE-Abdeckung: Signal zu schwach                                                                                             | 1 | reserviert                                                                     |   |  |  |
| 8     | Motorverbindungstest fehlgeschlagen                                                                                                    | 1 | reserviert                                                                     |   |  |  |
| 9     | Auslastung Leistungsteil (Ixt) hat Warnschwelle erreicht                                                                               | 0 | reserviert                                                                     |   |  |  |
| 10 15 | reserviert                                                                                                                             |   | reserviert                                                                     |   |  |  |
|       | * Reaktion: 0 = Warnung, 1 = Fehler                                                                                                    |   |                                                                                |   |  |  |

10.5 Fehlermeldungen, Ursachen & mögliche Abhilfen

\_\_\_\_\_

## 10.5 Fehlermeldungen, Ursachen & mögliche Abhilfen

Im Objekt 0x4003 wird der aktuelle Fehlercode des Application-Controllers (APPC) angezeigt.

### Mögliche Fehlercodes:

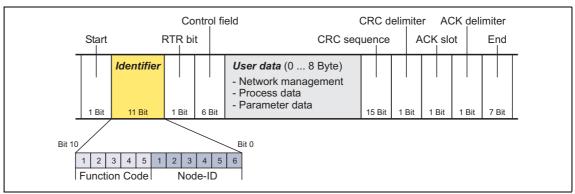
| Wert | Bedeutung/Ursache(n)                                                                      | Mögliche Abhilfe(n)                                                                                                                                                                                                      | LED1   |
|------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 0    | Kein Fehler                                                                               |                                                                                                                                                                                                                          | 0      |
| 1    | Ungültige CAN-Adresse (Offset)                                                            | Verdrahtung der ID-Pins (X31) überprüfen.  ▶ Geräte-Identifikation (□ 18)                                                                                                                                                | ((())) |
| 2    | Gerätefehler                                                                              | Netzschalten • Tritt das Problem erneut auf, ist Rücksprache mit Bucher erforderlich.                                                                                                                                    | 0      |
| 3    | Hardware/Firmware sind inkompatibel                                                       |                                                                                                                                                                                                                          | •      |
|      | Typenschlüsseldaten wurden bei Starten nicht oder fehlerhaft geschrieben                  | MOBILE neu starten                                                                                                                                                                                                       |        |
|      | Die Firmware passt nicht zur Hardware                                                     | Kompatible Firmware laden                                                                                                                                                                                                |        |
| 4    | Initialisierung der Flashdisk fehlgeschlagen                                              |                                                                                                                                                                                                                          | ((-))  |
| 5    | Bootloader/Firmware sind inkompatibel                                                     | Aktuelle Bootloader-Version verwenden                                                                                                                                                                                    | (      |
| 6    | Der MC wurde zurückgesetzt                                                                | Rücksprache mit Bucher erforderlich                                                                                                                                                                                      | •      |
| 19   | Die Spannung an Klemme KL30 beträgt 60 V                                                  |                                                                                                                                                                                                                          | •      |
| 20   | Kein oder ungültiger Datensatz                                                            |                                                                                                                                                                                                                          | •      |
|      | Es wurde kein Datensatz gefunden.                                                         |                                                                                                                                                                                                                          |        |
|      | Datensatz und Firmware sind inkompatibel.                                                 |                                                                                                                                                                                                                          |        |
|      | Keine Konfiguration im Datensatz für den eingestellten Adress-Offset (ID-Pins) vorhanden. |                                                                                                                                                                                                                          |        |
| 21   | SPI-Kommunikation zwischen APPC und MC fehlgeschlagen                                     |                                                                                                                                                                                                                          | •      |
| 22   | Download der MC-Firmware fehlgeschlagen                                                   |                                                                                                                                                                                                                          | •      |
|      | CAN-Bus (Private CAN) ist nicht terminiert.                                               | Überprüfen, ob der CAN-Bus (Private CAN) terminiert ist. Der CAN-Bus muss beim physikalisch ersten und letzten Busteilnehmer durch je einen Widerstand (120 $\Omega$ ) zwischen CAN-Low und CAN-High abgeschlossen sein. |        |
| 23   | Start der MC-Firmware fehlgeschlagen                                                      |                                                                                                                                                                                                                          | •      |
|      | CAN-Bus (Private CAN) ist nicht terminiert.                                               | Überprüfen, ob der CAN-Bus (Private CAN) terminiert ist. Der CAN-Bus muss beim physikalisch ersten und letzten Busteilnehmer durch je einen Widerstand (120 $\Omega$ ) zwischen CAN-Low und CAN-High abgeschlossen sein. |        |
|      | Der MC wird auf dem SDO-Server 1 angesprochen.                                            | Während des Flashvorgangs darf der MC<br>nicht auf dem SDO-Server 1 angesprochen<br>werden (z.B. über »MOBILE Engineer«).                                                                                                |        |

| Wert | Bedeutung/Ursache(n)                        | Mögliche Abhilfe(n)                                                                                                                                                                                                      | LED1 |
|------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 24   | Parametrierung des MC fehlgeschlagen        |                                                                                                                                                                                                                          | •    |
|      | CAN-Bus (Private CAN) ist nicht terminiert. | Überprüfen, ob der CAN-Bus (Private CAN) terminiert ist. Der CAN-Bus muss beim physikalisch ersten und letzten Busteilnehmer durch je einen Widerstand (120 $\Omega$ ) zwischen CAN-Low und CAN-High abgeschlossen sein. |      |
|      | Datensatz und Firmware sind inkompatibel.   | Zur Firmware passenden Datensatz verwenden.                                                                                                                                                                              |      |
|      | PDO-Mapping im Datensatz ungültig.          | PDO-Mapping im Datensatz überprüfen.                                                                                                                                                                                     |      |
| 25   | Public CAN Rx Message Timeout               |                                                                                                                                                                                                                          | 0    |
| 26   | Private CAN RxPDO Timeout                   |                                                                                                                                                                                                                          | 0    |
|      | CAN-Bus (Private CAN) ist nicht terminiert. | Überprüfen, ob der CAN-Bus (Private CAN) terminiert ist. Der CAN-Bus muss beim physikalisch ersten und letzten Busteilnehmer durch je einen Widerstand (120 $\Omega$ ) zwischen CAN-Low und CAN-High abgeschlossen sein. |      |
| 27   | Sollwert ungültig                           |                                                                                                                                                                                                                          | 0    |
| 28   | spi wuc intercom read failed                |                                                                                                                                                                                                                          | 0    |
| 29   | spi wuc intercom config failed              |                                                                                                                                                                                                                          | •    |
| 30   | spi wuc intercom sleep failed               |                                                                                                                                                                                                                          | •    |
| 31   | Kurzschluss auf dem CAN-Bus (Public CAN)    | Kurzschluss beseitigen                                                                                                                                                                                                   | 0    |
| 32   | Allgemeiner Fehler im MC                    |                                                                                                                                                                                                                          | •    |

- LED aus 0
- LED an
- LED blinkend im 0.4-s-Takt
- LED blinkend im 0.2-s-Takt
- LED Blinkmuster: blinkt einmal oder mehrmals mit einer Pause von 1 s

-----

#### 11 Private CAN - Prozessdaten


Der Application-Controller und der Motor-Controller sind über den Private CAN (CAN 2.0A) verbunden und kommunizieren nach CANopen gemäß dem Drive Profile DS 402.

#### Identifier der Prozessdaten-Objekte

Der Private CAN ist nachrichtenorientiert und nicht teilnehmerorientiert. Jede Nachricht hat eine eindeutige Kennung, den Identifier. Der Identifier für die Prozessdaten-Objekte setzt sich aus einem sogenannten Basis-Identifier und der CAN-Adresse des Motor-Controllers zusammen:

## Identifier (COB-ID) = Basis-Identifier + CAN-Adresse<sub>Motor-Controller</sub> (Node-ID)

Abweichend zur CANopen-Definition wurde der Function Code um ein Bit erweitert und die Node-ID um ein Bit verkleinert. Dadurch können statt der 8 PDOs maximal 16 PDOs konfiguriert werden. Um Überschneidungen zu vermeiden, sind für den Motor-Controller nur Node-IDs im Bereich von 1 ... 64 erlaubt.



[11-1] Prinzipieller Aufbau des CAN-Telegramms

#### Zuweisung der PDOs in der Objekttabelle

| PDO    | Basis-Identifier | Zuweisung für MOBILE DCU     | Zuweisung für MOBILE DCU/PSU      |
|--------|------------------|------------------------------|-----------------------------------|
| TPDO 1 | 0x180            | Istwerte vom Gerät           | Istwerte vom Gerät                |
| TPDO 2 | 0x1C0            | Status vom Inverter A        | Status vom Bordnetzwandler        |
| TPDO 3 | 0x240            | Istwerte (1) vom Motor A     | Istwerte (1) vom Bordnetzwandler  |
| TPDO 4 | 0x280            | Istwerte (2) vom Motor A     | Istwerte (2) vom Bordnetzwandler  |
| TPDO 5 | 0x2C0            | Status vom Inverter B        | Status vom Inverter B             |
| TPDO 6 | 0x340            | Istwerte (1) vom Motor B     | Istwerte (1) vom Motor B          |
| TPDO 7 | 0x380            | Istwerte (2) vom Motor B     | Istwerte (2) vom Motor B          |
| RPDO 1 | 0x200            | Sollwerte (1) für Inverter A | Sollwerte (1) für Bordnetzwandler |
| RPDO 2 | 0x300            | Sollwerte (2) für Inverter A | Sollwerte (2) für Bordnetzwandler |
| RPDO 3 | 0x400            | Sollwerte (1) für Inverter B | Sollwerte (1) für Inverter B      |
| RPDO 4 | 0x500            | Sollwerte (2) für Inverter B | Sollwerte (2) für Inverter B      |
| RPDO 5 | 0x540            | Sollwerte für Gerät          | Zeitstempel                       |

# 11.1 Prozessdaten-Objekte MOBILE DCU

.\_\_\_\_\_

## 11.1 Prozessdaten-Objekte MOBILE DCU

#### 11.1.1 TPDO 1 - Istwerte vom Gerät

| COB-ID          | PDO-Bezeichnung    | Zykluszeit | Sender | Empfänger |
|-----------------|--------------------|------------|--------|-----------|
| 0x180 + Node-ID | Device Actual TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                              | Datentyp   | Index       | Mapping   |
|-------|-----------------------------------|------------|-------------|-----------|
| 0-1   | Device actual DC link voltage     | INTEGER16  | 0x2732:0x02 | Mandatory |
| 2 - 3 | Device actual ambient temperature | INTEGER16  | 0x2711:0x04 | Optional  |
| 4 - 5 | Device actual DC link power       | INTEGER16  | 0x2732:0x0E | Optional  |
| 6 - 7 | Dummy Object                      | UNSIGNED16 | 0x2001:0x01 | Optional  |

#### 11.1.2 TPDO 2 - Status vom Inverter A

| COB-ID          | PDO-Bezeichnung        | Zykluszeit | Sender | Empfänger |
|-----------------|------------------------|------------|--------|-----------|
| 0x1C0 + Node-ID | Inverter A Status TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                                     | Datentyp   | Index       | Mapping   |
|-------|------------------------------------------|------------|-------------|-----------|
| 0 - 1 | Drive Profile Inverter A statusword      | UNSIGNED16 | 0x6041      | Mandatory |
| 2 - 5 | Inverter A Supervision: latched status 1 | UNSIGNED32 | 0x2900:0x05 | Mandatory |
| 6 - 7 | Inverter A Supervision: latched status 2 | UNSIGNED16 | 0x2900:0x07 | Mandatory |

# 11.1.3 TPDO 3 - Istwerte (1) vom Motor A

| COB-ID          | PDO-Bezeichnung       | Zykluszeit | Sender | Empfänger |
|-----------------|-----------------------|------------|--------|-----------|
| 0x240 + Node-ID | Motor A Actual 1 TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                                              | Datentyp  | Index  | Mapping  |
|-------|---------------------------------------------------|-----------|--------|----------|
| 0 - 3 | Drive Profile Inverter A vl velocity actual value | INTEGER32 | 0x6044 | Optional |
| 4 - 5 | Drive Profile Inverter A tq torque actual value   | INTEGER16 | 0x6077 | Optional |
| 6 - 7 | Drive Profile Inverter A tq current actual value  | INTEGER16 | 0x6078 | Optional |

# 11.1 Prozessdaten-Objekte MOBILE DCU

-----

## 11.1.4 TPDO 4 - Istwerte (2) vom Motor A

| COB-ID          | PDO-Bezeichnung       | Zykluszeit | Sender | Empfänger |
|-----------------|-----------------------|------------|--------|-----------|
| 0x280 + Node-ID | Motor A Actual 2 TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                        | Datentyp  | Index       | Mapping  |
|-------|-----------------------------|-----------|-------------|----------|
| 0 - 1 | Motor A: temperature        | INTEGER16 | 0x2910:0x05 | Optional |
| 2 - 3 | Motor A: powerActFiltered   | INTEGER16 | 0x292C:0x08 | Optional |
| 4 - 5 | Motor A: volSActFiltered    | INTEGER16 | 0x292C:0x0B | Optional |
| 6 - 7 | Power Module A: temperature | INTEGER16 | 0x2810:0x08 | Optional |

#### 11.1.5 TPDO 5 - Status vom Inverter B

| COB-ID          | PDO-Bezeichnung        | Zykluszeit | Sender | Empfänger |
|-----------------|------------------------|------------|--------|-----------|
| 0x2C0 + Node-ID | Inverter B Status TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                                     | Datentyp   | Index       | Mapping   |
|-------|------------------------------------------|------------|-------------|-----------|
| 0 - 1 | Drive Profile Inverter B statusword      | UNSIGNED16 | 0x6841      | Mandatory |
| 2 - 5 | Inverter B Supervision: latched status 1 | UNSIGNED32 | 0x3100:0x05 | Mandatory |
| 6 - 7 | Inverter B Supervision: latched status 2 | UNSIGNED16 | 0x3100:0x07 | Mandatory |

### 11.1.6 TPDO 6 - Istwerte (1) vom Motor B

| COB-ID          | PDO-Bezeichnung       | Zykluszeit | Sender | Empfänger |
|-----------------|-----------------------|------------|--------|-----------|
| 0x340 + Node-ID | Motor B Actual 1 TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                                              | Datentyp  | Index  | Mapping  |
|-------|---------------------------------------------------|-----------|--------|----------|
| 0 - 3 | Drive Profile Inverter B vl velocity actual value | INTEGER32 | 0x6844 | Optional |
| 4 - 5 | Drive Profile Inverter B tq torque actual value   | INTEGER16 | 0x6877 | Optional |
| 6 - 7 | Drive Profile Inverter B tq current actual value  | INTEGER16 | 0x6878 | Optional |

### 11.1.7 TPDO 7 - Istwerte (2) vom Motor B

| COB-ID          | PDO-Bezeichnung       | Zykluszeit | Sender | Empfänger |
|-----------------|-----------------------|------------|--------|-----------|
| 0x380 + Node-ID | Motor B Actual 2 TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                        | Datentyp  | Index       | Mapping  |
|-------|-----------------------------|-----------|-------------|----------|
| 0 - 1 | Motor B: temperature        | INTEGER16 | 0x3110:0x05 | Optional |
| 2 - 3 | Motor B: powerActFiltered   | INTEGER16 | 0x312C:0x0B | Optional |
| 4 - 5 | Motor B: volSActFiltered    | INTEGER16 | 0x292C:0x0B | Optional |
| 6 - 7 | Power Module B: temperature | INTEGER16 | 0x3010:0x08 | Optional |

# 11.1 Prozessdaten-Objekte MOBILE DCU

.\_\_\_\_\_

## 11.1.8 RPDO 1 - Sollwerte (1) für Inverter A

| COB-ID          | PDO-Bezeichnung            | Zykluszeit | Sender | Empfänger |
|-----------------|----------------------------|------------|--------|-----------|
| 0x200 + Node-ID | Inverter A Setpoint 1 RPDO | 20 ms      | APPC   | MC        |

| Byte  | Name                                        | Datentyp   | Index  | Mapping   |
|-------|---------------------------------------------|------------|--------|-----------|
| 0 - 1 | Drive Profile Inverter A controlword        | UNSIGNED16 | 0x6040 | Mandatory |
| 2 - 5 | Drive Profile Inverter A vI target velocity | INTEGER32  | 0x6042 | Optional  |
| 6 - 7 | Drive Profile Inverter A tq target torque   | INTEGER16  | 0x6071 | Optional  |

## 11.1.9 RPDO 2 - Sollwerte (2) für Inverter A

| COB-ID          | PDO-Bezeichnung            | Zykluszeit | Sender | Empfänger |
|-----------------|----------------------------|------------|--------|-----------|
| 0x300 + Node-ID | Inverter A Setpoint 2 RPDO | 20 ms      | APPC   | MC        |

| Byte  | Name                                         | Datentyp  | Index       | Mapping  |
|-------|----------------------------------------------|-----------|-------------|----------|
| 0 - 1 | Motor A Dc Link Controller: volDcLinkMaxSetp | INTEGER16 | 0x2926:0x01 | Optional |
| 2 - 3 | Motor A Dc Link Controller: volDcLinkMinSetp | INTEGER16 | 0x2926:0x02 | Optional |
| 4 - 5 | Motor A motoring power limit                 | INTEGER16 | 0x60E0:0x00 | Optional |
| 6 - 7 | Motor A generating power limit               | INTEGER16 | 0x60E1:0x00 | Optional |

## 11.1.10 RPDO 3 - Sollwerte (1) für Inverter B

| COB-ID          | PDO-Bezeichnung            | Zykluszeit | Sender | Empfänger |
|-----------------|----------------------------|------------|--------|-----------|
| 0x400 + Node-ID | Inverter B Setpoint 1 RPDO | 20 ms      | APPC   | MC        |

| Byte  | Name                                        | Datentyp   | Index  | Mapping   |
|-------|---------------------------------------------|------------|--------|-----------|
| 0 - 1 | Drive Profile Inverter B controlword        | UNSIGNED16 | 0x6840 | Mandatory |
| 2 - 5 | Drive Profile Inverter B vl target velocity | INTEGER32  | 0x6842 | Optional  |
| 6 - 7 | Drive Profile Inverter B tq target torque   | INTEGER16  | 0x6871 | Optional  |

### 11.1.11 RPDO 4 - Sollwerte (2) für Inverter B

| COB-ID          | PDO-Bezeichnung            | Zykluszeit | Sender | Empfänger |
|-----------------|----------------------------|------------|--------|-----------|
| 0x500 + Node-ID | Inverter B Setpoint 2 RPDO | 20 ms      | APPC   | MC        |

| Byte  | Name                                         | Datentyp  | Index       | Mapping  |
|-------|----------------------------------------------|-----------|-------------|----------|
| 0 - 1 | Motor B Dc Link Controller: volDcLinkMaxSetp | INTEGER16 | 0x3126:0x01 | Optional |
| 2 - 3 | Motor B Dc Link Controller: volDcLinkMinSetp | INTEGER16 | 0x3126:0x02 | Optional |
| 4 - 5 | Motor B motoring power limit                 | INTEGER16 | 0x68E0:0x00 | Optional |
| 6 - 7 | Motor B generating power limit               | INTEGER16 | 0x68E1:0x00 | Optional |

# 11.1 Prozessdaten-Objekte MOBILE DCU

.\_\_\_\_\_

### 11.1.12 RPDO 5 - Sollwerte für Gerät

| COB-ID          | PDO-Bezeichnung      | Zykluszeit | Sender | Empfänger |
|-----------------|----------------------|------------|--------|-----------|
| 0x540 + Node-ID | Device Setpoint RPDO | 20 ms      | APPC   | MC        |

#### RPDO 5 - Sollwerte bis Firmware R6.3

| Byte  | Name                          | Datentyp   | Index       | Mapping   |
|-------|-------------------------------|------------|-------------|-----------|
| 0 - 1 | Event Buffer: systemTimeStamp | UNSIGNED16 | 0x270A:0x04 | Mandatory |
| 2 - 3 | Dummy Object                  | UNSIGNED16 | 0x2001:0x01 | Optional  |
| 4 - 5 | Dummy Object                  | UNSIGNED16 | 0x2001:0x01 | Optional  |
| 6 - 7 | Dummy Object                  | UNSIGNED16 | 0x2001:0x01 | Optional  |

### RPDO 5 - Sollwerte ab Firmware R6.4

| Byte  | Name                             | Datentyp   | Index       | Mapping   |
|-------|----------------------------------|------------|-------------|-----------|
| 0 - 3 | systemTimeStamp                  | UNSIGNED32 | 0x270A:0x04 | Mandatory |
| 4 - 5 | DC Link voltage precharge demand | INTEGER16  | 0x2732:0x0A | Optional  |
| 6 - 7 | Dummy Object                     | UNSIGNED16 | 0x2000:0x01 | Optional  |

# 11.2 Prozessdaten-Objekte MOBILE DCU PSU

.\_\_\_\_\_

## 11.2 Prozessdaten-Objekte MOBILE DCU PSU

#### 11.2.1 TPDO 1 - Istwerte vom Gerät

| COB-ID          | PDO-Bezeichnung    | Zykluszeit | Sender | Empfänger |
|-----------------|--------------------|------------|--------|-----------|
| 0x180 + Node-ID | Device Actual TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                              | Datentyp   | Index       | Mapping   |
|-------|-----------------------------------|------------|-------------|-----------|
| 0 - 1 | Device actual DC link voltage     | INTEGER16  | 0x2732:0x02 | Mandatory |
| 2 - 3 | Device actual ambient temperature | INTEGER16  | 0x2711:0x04 | Optional  |
| 4 - 5 | Device actual DC link power       | INTEGER16  | 0x2732:0x0E | Optional  |
| 6 - 7 | Dummy Object                      | UNSIGNED16 | 0x2001:0x01 | Optional  |

### 11.2.2 TPDO 2 - Status vom Bordnetzwandler

| COB-ID          | PDO-Bezeichnung            | Zykluszeit | Sender | Empfänger |
|-----------------|----------------------------|------------|--------|-----------|
| 0x1C0 + Node-ID | DC Converter A Status TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                                       | Datentyp   | Index       | Mapping   |
|-------|--------------------------------------------|------------|-------------|-----------|
| 0-1   | Drive Profile DC Converter statusword      | UNSIGNED16 | 0x6041      | Mandatory |
| 2 - 5 | DC Converter Supervision: latched status 1 | UNSIGNED32 | 0x2900:0x05 | Mandatory |
| 6 - 7 | DC Converter Supervision: latched status 2 | UNSIGNED16 | 0x2900:0x07 | Mandatory |

## 11.2.3 TPDO 3 - Istwerte (1) vom Bordnetzwandler

| COB-ID          | PDO-Bezeichnung              | Zykluszeit | Sender | Empfänger |
|-----------------|------------------------------|------------|--------|-----------|
| 0x240 + Node-ID | DC Converter A Actual 1 TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                                                | Datentyp   | Index       | Mapping   |
|-------|-----------------------------------------------------|------------|-------------|-----------|
| 0 - 1 | Drive Profile DC Converter actual secondary voltage | INTEGER16  | 0x6202      | Mandatory |
| 2 - 3 | Drive Profile DC Converter actual secondary current | INTEGER16  | 0x6203      | Mandatory |
| 4 - 5 | Dummy Object                                        | UNSIGNED16 | 0x2001:0x01 | Optional  |
| 6 - 7 | Dummy Object                                        | UNSIGNED16 | 0x2001:0x01 | Optional  |

# 11.2 Prozessdaten-Objekte MOBILE DCU PSU

-----

## 11.2.4 TPDO 4 - Istwerte (2) vom Bordnetzwandler

| COB-ID          | PDO-Bezeichnung              | Zykluszeit | Sender | Empfänger |
|-----------------|------------------------------|------------|--------|-----------|
| 0x280 + Node-ID | DC Converter A Actual 2 TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                                           | Datentyp   | Index       | Mapping   |
|-------|------------------------------------------------|------------|-------------|-----------|
| 0 - 1 | DC Driver: temperature1                        | INTEGER16  | 0x2810:0x08 | Mandatory |
| 2 - 3 | DC Driver: temperature2                        | INTEGER16  | 0x2810:0x09 | Mandatory |
| 4 - 5 | DC Controller Power Calculation: powerFiltered | INTEGER16  | 0x291D:0x02 | Mandatory |
| 6 - 7 | Dummy Object                                   | UNSIGNED16 | 0x2001:0x01 | Optional  |

#### 11.2.5 TPDO 5 - Status vom Inverter B

| COB-ID          | PDO-Bezeichnung        | Zykluszeit | Sender | Empfänger |
|-----------------|------------------------|------------|--------|-----------|
| 0x2C0 + Node-ID | Inverter B Status TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                                     | Datentyp   | Index       | Mapping   |
|-------|------------------------------------------|------------|-------------|-----------|
| 0 - 1 | Drive Profile Inverter B statusword      | UNSIGNED16 | 0x6841      | Mandatory |
| 2 - 5 | Inverter B Supervision: latched status 1 | UNSIGNED32 | 0x3100:0x05 | Mandatory |
| 6 - 7 | Inverter B Supervision: latched status 2 | UNSIGNED16 | 0x3100:0x07 | Mandatory |

### 11.2.6 TPDO 6 - Istwerte (1) vom Motor B

| COB-ID          | PDO-Bezeichnung       | Zykluszeit | Sender | Empfänger |
|-----------------|-----------------------|------------|--------|-----------|
| 0x340 + Node-ID | Motor B Actual 1 TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                                              | Datentyp  | Index  | Mapping  |
|-------|---------------------------------------------------|-----------|--------|----------|
| 0 - 3 | Drive Profile Inverter B vl velocity actual value | INTEGER32 | 0x6844 | Optional |
| 4 - 5 | Drive Profile Inverter B tq torque actual value   | INTEGER16 | 0x6877 | Optional |
| 6 - 7 | Drive Profile Inverter B tq current actual value  | INTEGER16 | 0x6878 | Optional |

### 11.2.7 TPDO 7 - Istwerte (2) vom Motor B

| COB-ID          | PDO-Bezeichnung       | Zykluszeit | Sender | Empfänger |
|-----------------|-----------------------|------------|--------|-----------|
| 0x380 + Node-ID | Motor B Actual 2 TPDO | 20 ms      | MC     | APPC      |

| Byte  | Name                        | Datentyp  | Index       | Mapping  |
|-------|-----------------------------|-----------|-------------|----------|
| 0 - 1 | Motor B: temperature        | INTEGER16 | 0x3110:0x05 | Optional |
| 2 - 3 | Motor B: powerActFiltered   | INTEGER16 | 0x311D:0x1E | Optional |
| 4 - 5 | Motor B: volSActFiltered    | INTEGER16 | 0x311D:0x23 | Optional |
| 6 - 7 | Power Module B: temperature | INTEGER16 | 0x3010:0x08 | Optional |

# 11.2 Prozessdaten-Objekte MOBILE DCU PSU

.\_\_\_\_\_

## 11.2.8 RPDO 1 - Sollwerte (1) für Bordnetzwandler

| COB-ID          | PDO-Bezeichnung                | Zykluszeit | Sender | Empfänger |
|-----------------|--------------------------------|------------|--------|-----------|
| 0x200 + Node-ID | DC Converter A Setpoint 1 RPDO | 20 ms      | APPC   | MC        |

| Byte  | Name                                                      | Datentyp   | Index       | Mapping   |
|-------|-----------------------------------------------------------|------------|-------------|-----------|
| 0 - 1 | DC Converter A controlword                                | UNSIGNED16 | 0x6040      | Mandatory |
| 2 - 3 | Drive Profile DC Converter target secondary voltage       | INTEGER16  | 0x6200      | Optional  |
| 4 - 5 | Drive Profile DC Converter target secondary current       | INTEGER16  | 0x6201      | Optional  |
| 6 - 7 | DC Controller DC Link Min Controller:<br>volDcLinkMinSetp | INTEGER16  | 0x291E:0x02 | Optional  |

## 11.2.9 RPDO 2 - Sollwerte (2) für Bordnetzwandler

| COB-ID          | PDO-Bezeichnung                | Zykluszeit | Sender | Empfänger |
|-----------------|--------------------------------|------------|--------|-----------|
| 0x300 + Node-ID | DC Converter A Setpoint 2 RPDO | 20 ms      | APPC   | MC        |

| Byte  | Name         | Datentyp   | Index       | Mapping  |
|-------|--------------|------------|-------------|----------|
| 0 - 1 | Dummy Object | UNSIGNED16 | 0x2001:0x01 | Optional |
| 2 - 3 | Dummy Object | UNSIGNED16 | 0x2001:0x01 | Optional |
| 4 - 5 | Dummy Object | UNSIGNED16 | 0x2001:0x01 | Optional |
| 6 - 7 | Dummy Object | UNSIGNED16 | 0x2001:0x01 | Optional |

### 11.2.10 RPDO 3 - Sollwerte (1) für Inverter B

| COB-ID          | PDO-Bezeichnung            | Zykluszeit | Sender | Empfänger |
|-----------------|----------------------------|------------|--------|-----------|
| 0x400 + Node-ID | Inverter B Setpoint 1 RPDO | 20 ms      | APPC   | MC        |

| Byte  | Name                                        | Datentyp   | Index  | Mapping   |
|-------|---------------------------------------------|------------|--------|-----------|
| 0 - 1 | Drive Profile Inverter B controlword        | UNSIGNED16 | 0x6840 | Mandatory |
| 2 - 5 | Drive Profile Inverter B vl target velocity | INTEGER32  | 0x6842 | Optional  |
| 6 - 7 | Drive Profile Inverter B tq target torque   | INTEGER16  | 0x6871 | Optional  |

# 11.2 Prozessdaten-Objekte MOBILE DCU PSU

\_\_\_\_\_

## 11.2.11 RPDO 4 - Sollwerte (2) für Inverter B

| COB-ID          | PDO-Bezeichnung            | Zykluszeit | Sender | Empfänger |
|-----------------|----------------------------|------------|--------|-----------|
| 0x500 + Node-ID | Inverter B Setpoint 2 RPDO | 20 ms      | APPC   | MC        |

| Byte  | Name                                         | Datentyp  | Index       | Mapping  |
|-------|----------------------------------------------|-----------|-------------|----------|
| 0 - 1 | Motor B Dc Link Controller: volDcLinkMaxSetp | INTEGER16 | 0x3126:0x01 | Optional |
| 2 - 3 | Motor B Dc Link Controller: volDcLinkMinSetp | INTEGER16 | 0x3126:0x02 | Optional |
| 4 - 5 | Motor B motoring power limit                 | INTEGER16 | 0x68E0:0x00 | Optional |
| 6 - 7 | Motor B generating power limit               | INTEGER16 | 0x68E1:0x00 | Optional |

### 11.2.12 RPDO 5 - Sollwerte für Gerät

| COB-ID          | PDO-Bezeichnung      | Zykluszeit | Sender | Empfänger |
|-----------------|----------------------|------------|--------|-----------|
| 0x540 + Node-ID | Device Setpoint RPDO | 20 ms      | APPC   | MC        |

#### RPDO 5 - Sollwerte bis Firmware R6.3

| Byte  | Name                          | Datentyp   | Index       | Mapping   |
|-------|-------------------------------|------------|-------------|-----------|
| 0 - 1 | Event Buffer: systemTimeStamp | UNSIGNED16 | 0x270A:0x04 | Mandatory |
| 2 - 3 | Dummy Object                  | UNSIGNED16 | 0x2001:0x01 | Optional  |
| 4 - 5 | Dummy Object                  | UNSIGNED16 | 0x2001:0x01 | Optional  |
| 6 - 7 | Dummy Object                  | UNSIGNED16 | 0x2001:0x01 | Optional  |

### RPDO 5 - Sollwerte ab Firmware R6.4

| Byte  | Name                             | Datentyp   | Index       | Mapping   |
|-------|----------------------------------|------------|-------------|-----------|
| 0 - 3 | systemTimeStamp                  | UNSIGNED32 | 0x270A:0x04 | Mandatory |
| 4 - 5 | DC Link voltage precharge demand | INTEGER16  | 0x2732:0x0A | Optional  |
| 6 - 7 | Dummy Object                     | UNSIGNED16 | 0x2000:0x01 | Optional  |

#### 11.3 Timeout-Überwachung der RPDOs

-----

## 11.3 Timeout-Überwachung der RPDOs

Der MOBILE überwacht den regelmäßigen Empfang der RPDOs.

- Für jedes RPDO wird eine eigene Überwachung durchgeführt.
- Die Überwachung erfolgt nur, wenn für das RPDO der Transmission Type größer 253 und der Event Timer ungleich 0 ms eingestellt ist. In der Voreinstellung ist dies der Fall.
- Die Überwachung wird aktiv, sobald das entsprechende RPDO das erste Mal vom Motor-Controller empfangen wurde.
- Bleibt ein RPDO länger als die im Event Timer eingestellte Zeit aus, wird über das MC- <u>Statuswort 1</u> der Status "Kein PDO empfangen (Zeitüberschreitung)" gemeldet (Bit 19 bei DCU; Bit 21 bei PSU) und es erfolgt die eingestellte Fehlerreaktion (Voreinstellung: "4: Austrudeln in den Stillstand/Fehler setzen").
- Der Event Timer ist für alle RPDOs auf 100 ms voreingestellt.

| PDO    | Überwachungseinstellungen |             |                            | Flag "missed RPDO"                                |
|--------|---------------------------|-------------|----------------------------|---------------------------------------------------|
|        | Transmission Type         | Event Timer | Fehlerreaktion             |                                                   |
| RPDO 1 | 0x1400:0x02               | 0x1400:0x05 | 0x2900:0x09                | 0x2901:0x0E - Bit 0                               |
| RPDO 2 | 0x1401:0x02               | 0x1401:0x05 | -                          | 0x2901:0x0E - Bit 1                               |
| RPDO 3 | 0x1402:0x02               | 0x1402:0x05 | 0x3100:0x09                | 0x3101:0x0E - Bit 0                               |
| RPDO 4 | 0x1403:0x02               | 0x1403:0x05 |                            | 0x3101:0x0E - Bit 1                               |
| RPDO 5 | 0x1404:0x02               | 0x1404:0x05 | 0x2900:0x09<br>0x3100:0x09 | 0x2901:0x0E - Bit 3<br>UND<br>0x3101:0x0E - Bit 3 |

#### 11.4 Fehlerreaktion bei Ausfall der CAN-Kommunikation

Über das Objekt <u>0x2900:0x09</u> (bzw. <u>0x3100:0x09</u>) kann parametriert werden, welche Fehlerreaktion bei einem CAN-Kommunikationsfehler ausgeführt werden soll.

Folgende CAN-Kommunikationsfehler werden überwacht:

- Timeout der RPDOs. <u>Timeout-Überwachung der RPDOs</u>
- NMT-Zustandsmaschine nicht im Zustand "Operational"

11.5 PDO-Dummy-Mapping

\_\_\_\_\_

#### 11.5 PDO-Dummy-Mapping



# Hinweis!

Das Mapping der als optional gekennzeichneten Parameter kann geändert werden. Die korrekte Ansteuerung des Motor-Controllers über den Application-Controller kann damit aber nicht mehr gewährleistet werden!

Bei Fragen kontaktieren Sie bitte den Bucher-Support.

Mit Hilfe der unten aufgeführten Dummy-Objekte können Lücken in PDOs realisiert werden. Es können 2 oder 4 Byte breite Lücken gefüllt werden. Lücken in RPDOs müssen dazu auf Write-Only-Objekte und Lücken in TPDOs auf Read-Only-Objekte mit der entsprechenden Länge gemappt werden.

In jedes PDO können maximal vier 16-Bit-Werte gemappt werden. Ist die maximale Datenlänge von 8 Bytes schon mit 2 oder 3 gemappten Objekten ausgenutzt oder soll ein PDO gekürzt werden, muss der jeweilige Mapping-Parameter "Number of Entries" auf die Anzahl der gemappten Objekte reduziert werden.

| Dummy-Objekt | Name                                 | Länge  | Read-Only | Write-Only |
|--------------|--------------------------------------|--------|-----------|------------|
| 0x2000:0x01  | Write-Only Dummy Objects: UNSIGNED16 | 2 Byte |           | •          |
| 0x2000:0x02  | Write-Only Dummy Objects: UNSIGNED32 | 4 Byte |           | •          |
| 0x2001:0x01  | Read-Only Dummy Objects: UNSIGNED16  | 2 Byte | •         |            |
| 0x2002:0x02  | Read-Only Dummy Objects: UNSIGNED32  | 4 Byte | •         |            |

#### 12 Index

| Objekte                                                                          | 0x4022 <u>64</u>                                                 |
|----------------------------------------------------------------------------------|------------------------------------------------------------------|
| 0x1400 83                                                                        | 0x4023 <u>65</u>                                                 |
| 0x1800 <u>83</u>                                                                 | 0x4024 <u>65</u>                                                 |
| 0x270A <u>248</u> , <u>252</u>                                                   | 0x4025 <u>66</u>                                                 |
| 0x2711 <u>245</u> , <u>249</u>                                                   | 0x4030 <u>68</u>                                                 |
| 0x2730 <u>84</u> , <u>91</u>                                                     | 0x4040 <u>70</u>                                                 |
| 0x2732 <u>84</u> , <u>91</u> , <u>245</u> , <u>248</u> , <u>249</u> , <u>252</u> | 0x4050 <u>70</u>                                                 |
| 0x2810 <u>85</u> , <u>246</u> , <u>250</u>                                       | 0x4060 <u>80</u>                                                 |
| 0x2820 <u>97</u>                                                                 | 0x6040 <u>247</u> , <u>251</u>                                   |
| 0x2822 <u>98</u>                                                                 | 0x6041 <u>245</u> , <u>249</u>                                   |
| 0x2900 <u>86</u> , <u>157</u> , <u>245</u> , <u>249</u>                          | 0x6042 <u>247</u>                                                |
| 0x2901 <u>87</u> , <u>149</u> , <u>159</u>                                       | 0x6044 <u>245</u>                                                |
| 0x2910 <u>95</u> , <u>112</u> , <u>151</u> , <u>246</u>                          | 0x6046 <u>101</u> , <u>113</u>                                   |
| 0x2912 <u>110</u> , <u>112</u> , <u>117</u> , <u>161</u> , <u>163</u>            | 0x6048 <u>101</u>                                                |
| 0x2913 <u>137</u>                                                                | 0x6049 <u>102</u>                                                |
| 0x2914 <u>139</u>                                                                | 0x6060 <u>100</u>                                                |
| 0x2915 <u>140</u>                                                                | 0x6071 <u>247</u>                                                |
| 0x2916 <u>119</u> , <u>121</u>                                                   | 0x6072 <u>102</u>                                                |
| 0x2918 <u>128</u> , <u>134</u> , <u>164</u>                                      | 0x6073 <u>103</u> , <u>113</u>                                   |
| 0x291A <u>131</u> , <u>165</u>                                                   | 0x6076 <u>103</u>                                                |
| 0x291D <u>250</u>                                                                | 0x6077 <u>245</u>                                                |
| 0x291E <u>125</u> , <u>167</u> , <u>251</u>                                      | 0x6078 <u>245</u>                                                |
| 0x2926 <u>142</u> , <u>247</u>                                                   | 0x607C <u>105</u>                                                |
| 0x2928 <u>144</u>                                                                | 0x6085 <u>103</u>                                                |
| 0x292A <u>146</u>                                                                | 0x6087 <u>103</u>                                                |
| 0x292C <u>246</u>                                                                | 0x60C2 <u>105</u>                                                |
| 0x2980 <u>152</u> , <u>154</u>                                                   | 0x60E0 <u>247</u>                                                |
| 0x3010 <u>85</u> , <u>246</u> , <u>250</u>                                       | 0x60E1 <u>247</u>                                                |
| 0x3020 <u>97</u>                                                                 | 0x60F6 <u>103</u>                                                |
| 0x3022 <u>98</u>                                                                 | 0x60F7 <u>103</u>                                                |
| 0x3100 <u>86</u> , <u>246</u> , <u>250</u>                                       | 0x6200 <u>251</u>                                                |
| 0x3101 <u>87</u> , <u>149</u>                                                    | 0x6201 <u>251</u>                                                |
| 0x3110 <u>95</u> , <u>112</u> , <u>151</u> , <u>246</u> , <u>250</u>             | 0x6202 <u>249</u>                                                |
| 0x3112 <u>110</u> , <u>112</u> , <u>117</u>                                      | 0x6203 <u>249</u>                                                |
| 0x3113 <u>137</u>                                                                | 0x6840 <u>247</u> , <u>251</u><br>0x6841 <u>246</u> , <u>250</u> |
| 0x3114 <u>139</u>                                                                | 0x6842 <u>247</u> , <u>251</u>                                   |
| 0x3115 <u>140</u>                                                                | 0x6844 <u>246</u> , <u>250</u>                                   |
| 0x3116 <u>119</u> , <u>121</u>                                                   | 0x6846 <u>101</u> , <u>113</u>                                   |
| 0x3118 <u>128</u> , <u>134</u>                                                   | 0x6848 <u>101</u>                                                |
| 0x311A <u>131</u>                                                                | 0x6849 <u>102</u>                                                |
| 0x311D <u>250</u>                                                                | 0x6860 100                                                       |
| 0x311E <u>125</u>                                                                | 0x6871 <u>247</u> , <u>251</u>                                   |
| 0x3126 <u>142</u> , <u>247</u> , <u>252</u><br>0x3128 144                        | 0x6872 <u>102</u>                                                |
| 0x312A 146                                                                       | 0x6873 <u>103</u> , <u>113</u>                                   |
| 0x312C 246                                                                       | 0x6876 <u>103</u>                                                |
| 0x3180 <u>152</u> , <u>154</u>                                                   | 0x6877 <u>246</u> , <u>250</u>                                   |
| 0x4001 28                                                                        | 0x6878 <u>246</u> , <u>250</u>                                   |
| 0x4010 <u>45</u> , <u>91</u>                                                     | 0x687C <u>105</u>                                                |
| 0x4020 62                                                                        | 0x6885 103                                                       |
| 0x4021 64                                                                        | 0x6887 <u>103</u>                                                |
|                                                                                  |                                                                  |

| 0x68C2 <u>105</u>                                                             | curMrLoadFactor (0x2916:0x0B   0x3116:0x0B) 122                                                                                      |
|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 0x68E0 <u>247</u> , <u>252</u>                                                | curMrLoadFactor (0x291E:0x09   0x311E:0x09) <u>126</u>                                                                               |
| 0x68E1 <u>247</u> , <u>252</u>                                                | curMrOffset (0x2916:0x10   0x3116:0x10) 119, 122                                                                                     |
| 0x68F6 <u>103</u>                                                             | curMrOffset (0x291E:0x08   0x311E:0x08) 126                                                                                          |
| 0x68F7 <u>103</u>                                                             | curOpenLoop (0x291A:0x06   0x311A:0x06) <u>132</u>                                                                                   |
| _                                                                             | curQAct filter factor (0x2912:0x0E   0x3112:0x0E) <u>110</u>                                                                         |
| A                                                                             | Current Controller ID Tn (0x2918:0x07   0x3118:0x07) <u>128</u> ,                                                                    |
| Active Diagnostic Trouble Codes (DM1) 238                                     | <u>134</u>                                                                                                                           |
| alignTime (0x291A:0x05   0x311A:0x05) <u>131</u>                              | Current Controller ID Tn (0x291E:0x02   0x311E:0x02) <u>125</u>                                                                      |
| Amber Warning Lamp Status 238                                                 | Current Controller ID Vp (0x2918:0x06   0x3118:0x06) <u>128</u> ,                                                                    |
| Anwendungshinweise 11                                                         | 134                                                                                                                                  |
| APPC DCU A/B (0x4040   0x4050) <u>70</u>                                      | Current Controller ID Vp (0x291E:0x01   0x311E:0x01) 125                                                                             |
| APPC Device (0x4010) <u>45</u> , <u>91</u>                                    | Current Controller IDQ Tn (0x292A:0x02   0x312A:0x02) 146                                                                            |
| APPC Private CAN (0x4030) <u>68</u>                                           | Current Controller IDQ Vp (0x292A:0x01   0x312A:0x01) <u>146</u><br>Current Controller Imr Vp (0x2916:0x03   0x3116:0x03) <u>121</u> |
| APPC PSU A (0x4060) <u>80</u>                                                 | • • • • • • • • • • • • • • • • • • • •                                                                                              |
| APPC Public CAN (0x4020) 62                                                   | Current Controller Imr Vp (0x291E:0x0A   0x311E:0x0A) 126<br>Current Controller IQ Tn (0x2916:0x02   0x3116:0x02) 121                |
| APPC Public CAN Mapping (0x4025) <u>66</u>                                    | Current Controller IQ Tn (0x2918:0x02   0x3118:0x08) 129,                                                                            |
| APPC Public CAN Rx ID (0x4023) <u>65</u>                                      | 135                                                                                                                                  |
| APPC Public CAN Rx Timeout (0x4024) 65                                        | Current Controller IQ Tn (0x291E:0x04   0x311E:0x04) 125                                                                             |
| APPC Public CAN Tx Cycletime (0x4022) <u>64</u>                               | Current Controller IQ Vp (0x2916:0x01   0x3116:0x01) 121                                                                             |
| APPC Public CAN Tx ID (0x4021) 64                                             | Current Controller IQ Vp (0x2918:0x0A   0x3118:0x0A) 128,                                                                            |
| application (0x4040:0x02   0x4050:0x02) <u>71</u>                             | 134                                                                                                                                  |
| application (0x4060:0x02) <u>80</u>                                           | Current Controller IQ Vp (0x291E:0x03   0x311E:0x03) <u>125</u>                                                                      |
| Aufbau der Sicherheitshinweise <u>11</u>                                      | current nominal (0x2980:0x03   0x3180:0x03) <u>154</u>                                                                               |
| В                                                                             | current P1 (0x2980:0x05   0x3180:0x05) 154                                                                                           |
|                                                                               | current P2 (0x2980:0x06   0x3180:0x06) 154                                                                                           |
| baseAddr (0x4020:0x02) <u>62</u><br>baseAddr XCP APPC (0x4020:0x03) <u>62</u> | currentPrimaryOffset (0x2912:0x0D) 162                                                                                               |
| baseAddr XCP MC (0x4020:0x04) 62                                              | currentSetpRateLimit (0x2912:0x06) 161                                                                                               |
| baseAddrAppc (0x4030:0x02) 68                                                 | curSLimitFactor (0x2928:0x04   0x3128:0x04) 144                                                                                      |
| baseAddrMc (0x4030:0x02) 68                                                   | cycleTimeSetpoints (0x4030:0x05) 68                                                                                                  |
| baudrate (0x4020:0x01) 62                                                     | cycleTimeTimestamp (0x4030:0x06) 69                                                                                                  |
| baudrate (0x4030:0x01) 68                                                     |                                                                                                                                      |
| <u>baddiate</u> (0x4030:0x01) <u>08</u>                                       | D                                                                                                                                    |
| C                                                                             | Damping Controller Tp (0x2912:0x12   0x3112:0x12) 113                                                                                |
| CAN-Adressen 18                                                               | Damping Controller Tv (0x2912:0x08   0x3112:0x08) 112                                                                                |
| CAN-Bus 17                                                                    | DC Controller Current Controller (0x2912) 161, 163                                                                                   |
| Private CAN <u>17</u> , <u>244</u>                                            | DC Controller DC Link Min Controller (0x291E) 167                                                                                    |
| Public CAN <u>17</u> , <u>169</u>                                             | DC Controller Setpoint Generator (0x2918) <u>164</u>                                                                                 |
| CANopen 17                                                                    | DC Controller Voltage Controller (0x291A) 165                                                                                        |
| clamping config (0x2810:0x0C   0x3010:0x0C) <u>85</u>                         | DC Converter (0x2901) <u>159</u>                                                                                                     |
| clamping factor (0x2810:0x0B   0x3010:0x0B) <u>85</u>                         | DC Converter Supervision (0x2900) <u>157</u>                                                                                         |
| clamping timeout (0x2810:0x09   0x3010:0x09) 85                               | DC Link (0x2732) <u>84</u> , <u>91</u>                                                                                               |
| communication fault reaction (0x2900:0x09   0x3100:0x09)                      | DC Link Controller <u>141</u>                                                                                                        |
| <u>86</u>                                                                     | DC Link Limiter Tn (0x2912:0x11   0x3112:0x11) 113                                                                                   |
| communication fault reaction (0x2900:0x09) 157                                | DC Link Limiter Vp (0x2912:0x10   0x3112:0x10) 112                                                                                   |
| config (0x2730:0x05) <u>84</u> , <u>91</u>                                    | dcLinkController Vp (0x291E:0x04) <u>167</u>                                                                                         |
| control mode (0x2910:0x01   0x3110:0x01) <u>95</u>                            | dcVoltageMaxOvershoot (0x2912:0x0E) <u>164</u>                                                                                       |
| <b>curDAct</b> filter factor (0x2912:0x0D   0x3112:0x0D) <u>110</u>           | dcVoltageRamp (0x2912:0x08) <u>163</u>                                                                                               |
| curDcCorrLimitGain (0x291E:0x0B) <u>167</u>                                   | dcVoltageStart (0x2912:0x09) <u>163</u>                                                                                              |
| curDcCorrLimitGain (0x2926:0x0B   0x3126:0x0B) <u>142</u>                     | Decoupling Vp (0x2918:0x0C   0x3118:0x0C) 129, 135                                                                                   |
| curDOffset (0x2918:0x10   0x3118:0x10) <u>129</u> , <u>135</u>                | defaultCurrentSetp (0x4060:0x20) <u>82</u>                                                                                           |
| <b>curDOffsetSlope</b> (0x2928:0x05   0x3128:0x05) <u>144</u>                 | defaultDcLinkTolerance (0x4040:0x06   0x4050:0x06) 72                                                                                |
| curDRef (0x292A:0x05   0x312A:0x05) 146                                       | defaultDcLinkTolerance (0x4060:0x06) <u>81</u>                                                                                       |

256

| defaultDcLinkVoltage (0x4010:0x02) 45                                                                                            | Flex In Out (0x4021:0x05) 64                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| defaultGeneratingPowerLimit (0x4040:0x2E   0x4050:0x2E)                                                                          | Flex In Out (0x4022:0x05) 64                                                                                                                                                                                                                                                                 |
| <u>73</u>                                                                                                                        | Flex In Out (0x4023:0x05) 65                                                                                                                                                                                                                                                                 |
| defaultMotoringPowerLimit (0x4040:0x2F   0x4050:0x2F) 73                                                                         | Flex In Out (0x4024:0x05) 65                                                                                                                                                                                                                                                                 |
| defaultSpeedSetp (0x4040:0x20   0x4050:0x20) <u>73</u>                                                                           | flexIn1Func (0x4010:0x40) 46                                                                                                                                                                                                                                                                 |
| defaultTorqueSetp (0x4040:0x30   0x4050:0x30) 74                                                                                 | flexIn1FuncSwitchOffDelay (0x4010:0x48) 47                                                                                                                                                                                                                                                   |
| defaultVoltageSetp (0x4060:0x30) 82                                                                                              | flexIn1FuncSwitchOnDelay (0x4010:0x44) 47                                                                                                                                                                                                                                                    |
| Diagnose-Meldungen (SAE J1939-73) 238                                                                                            | flexIn2Func (0x4010:0x41) 46                                                                                                                                                                                                                                                                 |
| Diagnostic Trouble Code (DTC) 219, 225                                                                                           | flexIn2FuncSwitchOffDelay (0x4010:0x49) 47                                                                                                                                                                                                                                                   |
| direction (0x2910:0x08   0x3110:0x08) <u>96</u>                                                                                  | flexIn2FuncSwitchOnDelay (0x4010:0x45) 47                                                                                                                                                                                                                                                    |
| disable (0x4030:0x04) <u>68</u>                                                                                                  | flexIn3Func (0x4010:0x42) 46                                                                                                                                                                                                                                                                 |
| DM1 - Active Diagnostic Trouble Codes 238                                                                                        | flexIn3FuncSwitchOffDelay (0x4010:0x4A) 47                                                                                                                                                                                                                                                   |
| Dokumenthistorie 7                                                                                                               | flexIn3FuncSwitchOnDelay (0x4010:0x46) 47                                                                                                                                                                                                                                                    |
| Drive profile DS 402 <u>17</u>                                                                                                   | flexIn4Func (0x4010:0x43) 47                                                                                                                                                                                                                                                                 |
| Drive Profile Inverter A quick stop deceleration                                                                                 | flexIn4FuncSwitchOffDelay (0x4010:0x4B) 48                                                                                                                                                                                                                                                   |
| (0x6085   0x6885) <u>103</u>                                                                                                     | flexIn4FuncSwitchOnDelay (0x4010:0x47) 47                                                                                                                                                                                                                                                    |
| Drive Profile Inverter A/B csp home offset (0x607C   0x687C)                                                                     | flexOut1Func (0x4010:0x50) 48                                                                                                                                                                                                                                                                |
| 105                                                                                                                              | flexOut2Func (0x4010:0x51) 48                                                                                                                                                                                                                                                                |
| Drive Profile Inverter A/B csp interpolation time                                                                                | flexOut3Func (0x4010:0x52) 48                                                                                                                                                                                                                                                                |
| (0x60C2   0x68C2) <u>105</u>                                                                                                     | flexOut4Func (0x4010:0x53) 48                                                                                                                                                                                                                                                                |
| Drive Profile Inverter A/B modes of operation (0x6060   0x6860) 100                                                              | freqOpenLoop (0x291A:0x08   0x311A:0x08) 132                                                                                                                                                                                                                                                 |
| Drive Profile Inverter A/B tq max current (0x6073   0x6873)                                                                      | freqSlopeOpenLoop (0x291A:0x0E   0x311A:0x0E) <u>132</u>                                                                                                                                                                                                                                     |
| 103, 113                                                                                                                         | freqStart (0x292A:0x04   0x312A:0x04) <u>146</u>                                                                                                                                                                                                                                             |
| Drive Profile Inverter A/B tq max current slope                                                                                  | Frequency Controller Tn (0x292A:0x03   0x312A:0x03) 146                                                                                                                                                                                                                                      |
| (0x60F7   0x68F7) <u>103</u>                                                                                                     | frequency filter factor (0x2822:0x12   0x3022:0x12) <u>98</u>                                                                                                                                                                                                                                |
| Drive Profile Inverter A/B tq max torque (0x6072   0x6872)                                                                       | frequency nominal (0x2980:0x04   0x3180:0x04) 154                                                                                                                                                                                                                                            |
| <u>102</u>                                                                                                                       | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                      |
| Drive Profile Inverter A/B tq motor rated torque                                                                                 | G                                                                                                                                                                                                                                                                                            |
| (0x6076   0x6876) <u>103</u> Drive Profile Inverter A/B tq target velocity (0x60F6   0x68F6)                                     | genLimitFactor (0x2915:0x04) <u>140</u>                                                                                                                                                                                                                                                      |
| 103                                                                                                                              | Geräte-Identifikation <u>18</u>                                                                                                                                                                                                                                                              |
| Drive Profile Inverter A/B tq torque slope (0x6087   0x6887)                                                                     | Gerätenummer <u>18</u>                                                                                                                                                                                                                                                                       |
| 103                                                                                                                              | Gestaltung der Sicherheitshinweise <u>11</u>                                                                                                                                                                                                                                                 |
| Drive Profile Inverter A/B vl velocity acceleration                                                                              | Н                                                                                                                                                                                                                                                                                            |
| (0x6048   0x6848) <u>101</u>                                                                                                     |                                                                                                                                                                                                                                                                                              |
| Drive Profile Inverter A/B vI velocity deceleration                                                                              | Hardware-/Software-Kompatibilität <u>6</u>                                                                                                                                                                                                                                                   |
| (0x6049   0x6849) <u>102</u>                                                                                                     | HVIL 89                                                                                                                                                                                                                                                                                      |
| Drive Profile Inverter A/B vI velocity max min (0x6046   0x6846) 101, 113                                                        | HV-InterLock-Funktionalität <u>89</u>                                                                                                                                                                                                                                                        |
| DTC (Diagnostic Trouble Code) <u>225</u>                                                                                         | 1                                                                                                                                                                                                                                                                                            |
| dynamic offset factor (0x2822:0x13   0x3022:0x13) 99                                                                             | Identifikation <u>18</u>                                                                                                                                                                                                                                                                     |
| E                                                                                                                                | ID-Pins <u>18</u>                                                                                                                                                                                                                                                                            |
|                                                                                                                                  | IMax Controller Tn (0x2912:0x07   0x3112:0x07) 112                                                                                                                                                                                                                                           |
| enable short circuit monitoring (0x4020:0x30) 64                                                                                 | IMax Controller Vp (0x2912:0x06   0x3112:0x06) 1112                                                                                                                                                                                                                                          |
| errorTimeMax (0x2901:0x08) <u>160</u>                                                                                            | : (0,,c0c2 0,,02   0,,c0c2 0,,02) 10F                                                                                                                                                                                                                                                        |
| Erstes Einschalten 25                                                                                                            | index (0x60C2:0x02   0x68C2:0x02) 105                                                                                                                                                                                                                                                        |
| Erstes Einschalten <u>35</u>                                                                                                     | Informationen zur Gültigkeit <u>6</u>                                                                                                                                                                                                                                                        |
| _                                                                                                                                | Informationen zur Gültigkeit <u>6</u> Inverter A/B (0x2901   0x3101) <u>87</u> , <u>149</u>                                                                                                                                                                                                  |
| F                                                                                                                                | Informationen zur Gültigkeit <u>6</u> Inverter A/B (0x2901   0x3101) <u>87</u> , <u>149</u> Inverter A/B Supervision (0x2900   0x3100) <u>86</u>                                                                                                                                             |
| <b>F</b> Failure Mode Identifier (FMI) 221                                                                                       | Informationen zur Gültigkeit <u>6</u> Inverter A/B (0x2901   0x3101) <u>87</u> , <u>149</u> Inverter A/B Supervision (0x2900   0x3100) <u>86</u> itc config (0x2901:0x01   0x3101:0x01) <u>87</u> , <u>149</u>                                                                               |
| Failure Mode Identifier (FMI) 221 feedback config (0x2910:0x07   0x3110:0x07) 96                                                 | Informationen zur Gültigkeit <u>6</u> Inverter A/B (0x2901   0x3101) <u>87</u> , <u>149</u> Inverter A/B Supervision (0x2900   0x3100) <u>86</u> itc config (0x2901:0x01   0x3101:0x01) <u>87</u> , <u>149</u> ixt limitation threshold (0x2901:0x12   0x3101:0x12) <u>88</u> , <u>150</u>   |
| Failure Mode Identifier (FMI) 221<br>feedback config (0x2910:0x07   0x3110:0x07) 96<br>Fehlercodes (APPC) 242                    | Informationen zur Gültigkeit 6<br>Inverter A/B (0x2901   0x3101) 87, 149<br>Inverter A/B Supervision (0x2900   0x3100) 86<br>itc config (0x2901:0x01   0x3101:0x01) 87, 149<br>ixt limitation threshold (0x2901:0x12   0x3101:0x12) 88, 150<br>ixt limitation threshold (0x2901:0x14) 160    |
| Failure Mode Identifier (FMI) 221<br>feedback config (0x2910:0x07   0x3110:0x07) 96<br>Fehlercodes (APPC) 242<br>Fehler-Reset 38 | Informationen zur Gültigkeit 6 Inverter A/B (0x2901   0x3101) 87, 149 Inverter A/B Supervision (0x2900   0x3100) 86 itc config (0x2901:0x01   0x3101:0x01) 87, 149 ixt limitation threshold (0x2901:0x12   0x3101:0x12) 88, 150 ixt limitation threshold (0x2901:0x14   0x3101:0x14) 88, 150 |
| Failure Mode Identifier (FMI) 221<br>feedback config (0x2910:0x07   0x3110:0x07) 96<br>Fehlercodes (APPC) 242                    | Informationen zur Gültigkeit 6<br>Inverter A/B (0x2901   0x3101) 87, 149<br>Inverter A/B Supervision (0x2900   0x3100) 86<br>itc config (0x2901:0x01   0x3101:0x01) 87, 149<br>ixt limitation threshold (0x2901:0x12   0x3101:0x12) 88, 150<br>ixt limitation threshold (0x2901:0x14) 160    |

filter tau (0x291A:0x04 | 0x311A:0x04) 131

| J                                                                         | MOBILE Panels 31                                                                                                         |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| J1939 DM1 AWL config (0x4020:0x22) 63                                     | MOBILE Panels <u>31</u>                                                                                                  |
| J1939 DM1 enable (0x4020:0x20) <u>62</u>                                  | MOBILE-Gerätenummer 19, 21                                                                                               |
| J1939 DM1 MIL config (0x4020:0x24) 63                                     | motLimitFactor (0x2915:0x03) <u>140</u>                                                                                  |
| J1939 DM1 PL config (0x4020:0x21) 63                                      | Motor A/B (0x2910   0x3110) <u>95</u> , <u>112</u> , <u>151</u>                                                          |
| J1939 DM1 RSL config (0x4020:0x23) 63                                     | Motor A/B DC Link Controller (0x2926   0x3126) 142                                                                       |
| v.                                                                        | Motor A/B Field Weakening Controller (0x2928   0x3128) 144                                                               |
| K                                                                         | Motor A/B Flying Restart Circuit (0x292A   0x312A) 146                                                                   |
| k (0x291A:0x03   0x311A:0x03) 131                                         | Motor A/B   2xt Load (0x2980   0x3180)   152, 154                                                                        |
| <b>Ke</b> (0x291A:0x09   0x311A:0x09) 132                                 | Motor A/B Position Controller (0x2913   0x3113) 137                                                                      |
| Kff (0x2913:0x02   0x3113:0x02) <u>137</u>                                | Motor A/B Position Velocity Observer (0x291A   0x311A) 131                                                               |
| Klemme-15-Signal <u>38</u>                                                | Motor A/B Power and Torque Limiter (0x2915   0x3115) 140                                                                 |
| L                                                                         | Motor A/B SLVCI (0x2916   0x3116) 119, 121                                                                               |
|                                                                           | Motor A/B SLVFCI (0x2912   0x3112) 110, 112, 117                                                                         |
| limitation temperature (0x2901:0x16   0x3101:0x16) <u>88</u> , <u>150</u> | Motor A/B VCI (0x291E   0x311E) 125                                                                                      |
| limitation temperature 1 (0x2901:0x05) 160                                | Motor A/B VCS (0x2918   0x3118) 128, 134                                                                                 |
| limitation temperature 2 (0x2901:0x06) 160                                | Motor A/B Velocity Controller (0x2914   0x3114) 139                                                                      |
| M                                                                         | Motor Data curMrNom (0x2916:0x0A   0x3116:0x0A) <u>122</u><br>Motor Data curMrNom (0x291E:0x07   0x311E:0x07) <u>126</u> |
| Malfunction Indicator Lamp Status 238                                     | Motor Data cur/Minorii (0x2916:0x07   0x3116:0x07) 120<br>Motor Data curQNom (0x2916:0x09   0x3116:0x09) 122             |
| mappedFlexInOutSignal1 (0x4025:0x02) 66                                   | Motor Data curQNom (0x2916:0x09   0x3116:0x09) 1222<br>Motor Data curQNom (0x291E:0x06   0x311E:0x06) 126                |
| mappedFlexInOutSignal2 (0x4025:0x02) 66                                   | Motor Data Ld (0x2918:0x13   0x3118:0x13) 129, 135                                                                       |
| mappingMsg1DcuAByte3And4 (0x4025:0x04) <u>67</u>                          | Motor Data Ld (0x2918:0x15   0x3118:0x15) 122, 133<br>Motor Data Ld (0x2918:0x0C   0x3118:0x0C) 132                      |
| mappingMsg1DcuAByte7 (0x4025:0x05) 67                                     | Motor Data Ltd (0x2916:0x05   0x3116:0x05) 121                                                                           |
| mappingMsg2DcuBByte3And4 (0x4025:0x06) <u>67</u>                          | Motor Data Lr (0x2918:0x03   0x3118:0x03) 1221<br>Motor Data Lq (0x2918:0x14   0x3118:0x14) 129, 135                     |
| mappingMsg2DcuBByte7 (0x4025:0x007) <u>67</u>                             | Motor Data Lq (0x291A:0x0D   0x311A:0x0D) 132                                                                            |
| mappingMsg3PsuByte7 (0x4025:0x08) <u>67</u>                               | Motor Data Ls (0x291A:0x01   0x311A:0x01) 131                                                                            |
| mappingPsuVoltageSignals (0x4025:0x01) 66                                 | Motor Data Lsl (0x2916:0x06   0x3116:0x06) 121                                                                           |
| max (0x6046:0x01   0x6846:0x01) <u>101</u> , <u>113</u>                   | Motor Data Rotor Flux (0x2918:0x12   0x3118:0x12) 129,                                                                   |
| mcCounterResetDelayTime1 (0x4040:0x17   0x4050:0x17) 72                   | 135                                                                                                                      |
| mcCounterResetDelayTime1 (0x4060:0x17) 81                                 | Motor Data Rs (0x2916:0x07   0x3116:0x07) 122                                                                            |
| mcCounterResetDelayTime2 (0x4040:0x1B   0x4050:0x1B)                      | Motor Data Rs (0x291A:0x02   0x311A:0x02) 131                                                                            |
| <u>73</u>                                                                 | Motor Data Rs (0x292A:0x06   0x312A:0x06) 146                                                                            |
| mcCounterResetDelayTime2 (0x4060:0x1B) 82                                 | Motor Data Tr (0x2912:0x13   0x3112:0x13) 117                                                                            |
| mcFaultResetDelayTime1 (0x4040:0x16   0x4050:0x16) 72                     | Motor Data Tr (0x2916:0x08   0x3116:0x08) 122                                                                            |
| mcFaultResetDelayTime1 (0x4060:0x16) 81                                   | Motor Data Tr (0x291E:0x05   0x311E:0x05) 125                                                                            |
| mcFaultResetDelayTime2 (0x4040:0x1A   0x4050:0x1A) 73                     | Motor Feedback Plug A/B (0x2820   0x3020) 97                                                                             |
| mcFaultResetDelayTime2 (0x4060:0x1A) 82                                   | msg0 (0x4021:0x01) <u>64</u>                                                                                             |
| mcFaultResetMaskH (0x4040:0x12   0x4050:0x12) <u>72</u>                   | msg0 (0x4022:0x01) 64                                                                                                    |
| mcFaultResetMaskH (0x4060:0x12) <u>81</u>                                 | msg0 (0x4023:0x01) <u>65</u>                                                                                             |
| mcFaultResetMaskL (0x4040:0x13   0x4050:0x13) <u>72</u>                   | msg0 (0x4024:0x01) <u>65</u>                                                                                             |
| mcFaultResetMaskL (0x4060:0x13) <u>81</u>                                 | msg1 (0x4021:0x02) <u>64</u>                                                                                             |
| mcMaxResetNumber1 (0x4040:0x18   0x4050:0x18) 72                          | msg1 (0x4022:0x02) <u>64</u>                                                                                             |
| mcMaxResetNumber1 (0x4060:0x18) 81                                        | msg1 (0x4023:0x02) <u>65</u>                                                                                             |
| mcMaxResetNumber2 (0x4040:0x1C   0x4050:0x1C) <u>73</u>                   | msg1 (0x4024:0x02) <u>65</u>                                                                                             |
| mcMaxResetNumber2 (0x4060:0x1C) 82                                        | msg2 (0x4021:0x03) <u>64</u>                                                                                             |
| mcResetTypeMaskH (0x4040:0x14   0x4050:0x14) <u>72</u>                    | msg2 (0x4022:0x03) <u>64</u>                                                                                             |
| mcResetTypeMaskH (0x4060:0x14) <u>81</u>                                  | msg2 (0x4023:0x03) <u>65</u>                                                                                             |
| mcResetTypeMaskL (0x4040:0x15   0x4050:0x15) 72                           | msg2 (0x4024:0x03) <u>65</u>                                                                                             |
| mcResetTypeMaskL (0x4060:0x15) 81                                         | msg3 (0x4021:0x04) <u>64</u>                                                                                             |
| MC-Statuswort 1 240                                                       | msg3 (0x4022:0x04) <u>64</u>                                                                                             |
| MC-Statuswort 2 <u>241</u>                                                | msg3 (0x4023:0x04) <u>65</u>                                                                                             |
| min (0x6046:0x02   0x6846:0x02) <u>101</u> , <u>113</u>                   | msg3 (0x4024:0x04) <u>65</u>                                                                                             |

MOBILE Engineer 22

| ••                                                            | B                                                                          |
|---------------------------------------------------------------|----------------------------------------------------------------------------|
| N                                                             | Private CAN 244                                                            |
| noMcUpdate (0x4010:0x20) <u>46</u>                            | Protect Lamp Status 238                                                    |
| nonfatal fault reaction (0x2900:0x0C   0x3100:0x0C) <u>86</u> | Public CAN 169                                                             |
|                                                               | pwmDcVoltageLowerLimit (0x2912:0x0A) <u>163</u>                            |
| 0                                                             | D.                                                                         |
| Objekt Dictionary <u>24</u>                                   | R                                                                          |
| operationMode (0x4010:0x01) <u>45</u>                         | Receive PDO Communication Parameter 1 (0x1400) 83                          |
| option config (0x2901:0x02   0x3101:0x02) 87, 149             | Red Stop Lamp Status 238                                                   |
| _                                                             | Resolver A/B (0x2822   0x3022) <u>98</u>                                   |
| P                                                             | S                                                                          |
| Parametereinstellungen speichern <u>28</u>                    |                                                                            |
| Parameter-Handling <u>35</u>                                  | SAE J1939 <u>17</u> , <u>238</u>                                           |
| PC-Systembusadapter <u>22</u>                                 | Shutdown 38                                                                |
| period value (0x60C2:0x01   0x68C2:0x01) <u>105</u>           | shutdownDelay (0x4010:0x03) <u>45</u>                                      |
| Plug Cover (0x2730) <u>84</u> , <u>91</u>                     | Sicherheitshinweise <u>11</u>                                              |
| pole pairs (0x2910:0x02   0x3110:0x02) <u>95</u> , <u>112</u> | speedOff (0x4040:0x21   0x4050:0x21) <u>73</u>                             |
| pole pairs ratio (0x2822:0x05   0x3022:0x05) <u>98</u>        | stall detection cos phi min (0x2910:0x13   0x3110:0x13) <u>96</u>          |
| position device type (0x2820:0x05   0x3020:0x05) <u>97</u>    | stall detection current min (0x2910:0x14   0x3110:0x14) <u>96</u>          |
| position offset (0x2822:0x03   0x3022:0x03) <u>98</u>         | stator frequency error limit (0x2910:0x06   0x3110:0x06) <u>96</u>         |
| Power Module A/B (0x2810   0x3010) <u>85</u>                  | Statuswort 1 (MC) 240                                                      |
| preControlRateLimit (0x2912:0x0F) 162                         | Statuswort 2 (MC) 241                                                      |
| presetSpeedSetp1 (0x4040:0x31   0x4050:0x31) 74               | Store Parameter (0x4001:0x01) <u>28</u>                                    |
| presetSpeedSetp10 (0x4040:0x3A   0x4050:0x3A) 75              | Suspect Parameter Number (SPN) 221                                         |
| presetSpeedSetp11 (0x4040:0x3B   0x4050:0x3B) 75              | switching frequency (0x2901:0x07   0x3101:0x07) 88, 150                    |
| presetSpeedSetp12 (0x4040:0x3C   0x4050:0x3C) 75              | switchOnDelay (0x4040:0x01   0x4050:0x01) 71                               |
| presetSpeedSetp13 (0x4040:0x3D   0x4050:0x3D) 75              | switchOnDelay (0x4060:0x01) <u>80</u>                                      |
| presetSpeedSetp14 (0x4040:0x3E   0x4050:0x3E) 76              | SystemEnable 174                                                           |
| presetSpeedSetp15 (0x4040:0x3F   0x4050:0x3F) 76              | , <u> </u>                                                                 |
| presetSpeedSetp16 (0x4040:0x40   0x4050:0x40) 76              | T                                                                          |
| presetSpeedSetp2 (0x4040:0x32   0x4050:0x32) 74               | targetCurrentSlope (0x291A:0x0B) 166                                       |
| presetSpeedSetp3 (0x4040:0x32   0x4050:0x32) 74               | temperature error limit (0x2910:0x04   0x3110:0x04) <u>96</u> , <u>151</u> |
| presetSpeedSetp4 (0x4040:0x33   0x4050:0x33) 74               | temperature limitation limit (0x2910:0x09   0x3110:0x09)                   |
| presetSpeedSetp5 (0x4040:0x35   0x4050:0x34) 74               | <u>96, 151</u>                                                             |
| presetSpeedSetp6 (0x4040:0x35   0x4050:0x35) 74               | temperature sensor type (0x2820:0x04   0x3020:0x04) 97                     |
| · · · · · · · · · · · · · · · · · · ·                         | temperature warning limit (0x2910:0x03   0x3110:0x03) 95,                  |
| presetSpeedSetp7 (0x4040:0x37   0x4050:0x37) <u>75</u>        | <u>151</u>                                                                 |
| presetSpeedSetp8 (0x4040:0x38   0x4050:0x38) <u>75</u>        | thermal time constant (0x2980:0x02   0x3180:0x02) <u>154</u>               |
| presetSpeedSetp9 (0x4040:0x39   0x4050:0x39) <u>75</u>        | threshold fault (0x2980:0x08   0x3180:0x08) <u>152</u>                     |
| presetTorqueSetp1 (0x4040:0x41   0x4050:0x41) <u>76</u>       | threshold limitation (0x2980:0x0A   0x3180:0x0A) <u>152</u>                |
| presetTorqueSetp10 (0x4040:0x4A   0x4050:0x4A) 77             | threshold warning (0x2980:0x07   0x3180:0x07) <u>152</u>                   |
| presetTorqueSetp11 (0x4040:0x4B   0x4050:0x4B) 77             | timeout time (0x292A:0x07   0x312A:0x07) 147                               |
| presetTorqueSetp12 (0x4040:0x4C   0x4050:0x4C) 78             | Tn (0x2912:0x04) 161                                                       |
| presetTorqueSetp13 (0x4040:0x4D   0x4050:0x4D) 78             | Tn (0x2914:0x02   0x3114:0x02) <u>139</u>                                  |
| presetTorqueSetp14 (0x4040:0x4E   0x4050:0x4E) <u>78</u>      | Tn (0x291A:0x04) <u>166</u>                                                |
| presetTorqueSetp15 (0x4040:0x4F   0x4050:0x4F) <u>78</u>      | Tn (0x2926:0x0A   0x3126:0x0A) 142                                         |
| presetTorqueSetp16 (0x4040:0x50   0x4050:0x50) <u>78</u>      | Tn (0x2928:0x02   0x3128:0x02) 144                                         |
| presetTorqueSetp2 (0x4040:0x42   0x4050:0x42) <u>76</u>       | torqueOff (0x4040:0x22   0x4050:0x22) 73                                   |
| presetTorqueSetp3 (0x4040:0x43   0x4050:0x43) <u>76</u>       | Tp (0x2914:0x0E   0x3114:0x0E) <u>139</u>                                  |
| presetTorqueSetp4 (0x4040:0x44   0x4050:0x44) <u>76</u>       | Trace-Funktion 212                                                         |
| presetTorqueSetp5 (0x4040:0x45   0x4050:0x45) 77              | Tracking Controller Tn (0x291A:0x0B   0x311A:0x0B) 132                     |
| presetTorqueSetp6 (0x4040:0x46   0x4050:0x46) <u>77</u>       | Tracking Controller Vp (0x291A:0x0A   0x311A:0x0A) 132                     |
| presetTorqueSetp7 (0x4040:0x47   0x4050:0x47) 77              | Transmit PDO Communication Parameter 1 (0x1800) 83                         |
| presetTorqueSetp8 (0x4040:0x48   0x4050:0x48) 77              | Tv (0x2914:0x0D   0x3114:0x0D) <u>139</u>                                  |
| presetTorqueSetp9 (0x4040:0x49   0x4050:0x49) 77              | (VAZZIT.OAOD   VAZIIT.OAOD) 133                                            |

-----

```
U
                                                                Ζ
UDS 183
                                                                Zielgruppe 6
  Clear Diagnostic Information ($14) 189
  Communication Control ($28) 199
  Control DTC Setting ($85) 206
  Diagnostic Trouble Codes (DTC) 225
  ECU Reset ($11) 188
  Negative Response Codes 207
  Read Data By Identifier ($22) 195
  Read DTC Information ($19) 190
  Request Download ($34) 201
  Request Transfer Exit ($37) 204
  Request Upload ($35) 202
  Routine Control ($31) 200
  Security Access ($27) 196
  Tester Present ($3E) 205
  Transfer Data ($36) 203
Unified Diagnostic Services (UDS) 183
Universal Measurement and Calibration Protocol (XCP) 208
useEmcySetp (0x4040:0x05 | 0x4050:0x05) 71
useEmcySetp (0x4060:0x05) 80
velocityScalingEnumeration (0x4010:0x04) 46
Verwendete Begriffe 9
volDcLinkLimitSlope (0x291E:0x03) 167
volDcLinkLimitSlope (0x2926:0x03 | 0x3126:0x03) 142
volEMFMin (0x291A:0x07 | 0x311A:0x07) 132
volSLimitFactor (0x2928:0x03 | 0x3128:0x03) 144
voltage min (0x2732:0x07) 84
voltage precharge demand (0x2732:0x0A) 91
voltage ripple max (0x2732:0x0D) 84
voltageControllerAdaption (0x291A:0x0F) 166
voltagePrechargeDemand (0x4010:0x05) 46, 91
voltageSecondaryMin (0x2901:0x07) 160
voltageSetpRateLimit (0x2918:0x02) 164
Vp (0x2912:0x03) 161
Vp (0x2913:0x01 | 0x3113:0x01) 137
Vp (0x2914:0x01 | 0x3114:0x01) 139
Vp (0x291A:0x03) 165
Vp (0x2926:0x04 | 0x3126:0x04) 142
Vp (0x2928:0x01 | 0x3128:0x01) 144
wakeSourceConfig (0x4010:0x10) 46
warning temperature (0x2901:0x03 | 0x3101:0x03) 88, 150
warning temperature 1 (0x2901:0x01) 159
warning temperature 2 (0x2901:0x03) 159
Χ
XCP APPC (0x4021:0x10) 64
XCP APPC (0x4023:0x10) 65
XCP MC (0x4021:0x11) 64
XCP MC (0x4023:0x11) 65
```

# 12 Index

.\_\_\_\_\_

Herausgeber
Bucher Hydraulics AG
MOBILE Drives
Obere Neustrasse 1
CH-8590 Romanshorn

Telefon +41 41 757 03 33

Email <u>info.ch@bucherdrives.com</u>
Internet <u>www.bucherdrives.com</u>

Service

Bucher Automation AG Thomas-Alva-Edison-Ring 10 DE-71672 Marbach am Neckar Deutschland

Email <u>claims.rh@bucherdrives.com</u>

Internet <u>www.bucherdrives.com</u>